detrend using cubic splines
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Venkatessh
el 8 de Feb. de 2013
Comentada: Bruno Luong
el 17 de Oct. de 2018
How can I detrend a time series using cubic spline interpolation? I would like to get this done over for eg., 0.2 year bins.
0 comentarios
Respuesta aceptada
Shashank Prasanna
el 8 de Feb. de 2013
Venkatessh, detrending is just a process of removing long term deterministic patterns or in short trends. For example your data may look like it is exponentially increasing, but with variation. You are more interested in the variation because the exponential increase renders the data non-stationary.
It is as simple as fitting your data to the best possible curve and subtracting it from your data.
Simple example:
Generate data and get a spline fitted trend:
x = 0:100;
y = 100*randn(1,length(x))+x.^2;
xx = 0:10:100;
yy = spline(x,y,xx);
Substract the trend from your original data and plot the detrended variation sequence.
ytrend = interp1(xx,yy,x,'spline');
subplot(2,1,1)
plot(x,y,'.',x,ytrend);
subplot(2,1,2)
plot(x,y-ytrend)
18 comentarios
Shashank Prasanna
el 8 de Feb. de 2013
Honestly, I don't know if there is a definition written on stone somewhere east of here, but that is atleast the accepted convention. All the following methods fit into the non-parametric model framework: Splines, Neural Networks, SVM (and other kernel estimators), regression trees etc
Anyway this made for a nice discussion. I wish this topic wasn't embedded in another post, would loved to have see more responses.
Image Analyst
el 8 de Feb. de 2013
I'm not sure what "I need to be very careful in discarding the data. " means. Of course any type of fitting, regression, or detrending is going to discard data. Even though the data may go into creating the fit, eventually the data is going to be discarded and replaced by the fitted/estimated/smoothed values. If you didn't want to do that, you'd just keep your original data. So you are going to discard data and replace it - the only issue to decide is how much to smooth the data.
Más respuestas (2)
Matt J
el 8 de Feb. de 2013
Editada: Matt J
el 8 de Feb. de 2013
Here's an example of how to do a cubic spline regression using interpMatrix. You would have to choose how finely you wanted to space the control points, which would affect the stiffness of the spline fit. In the example, the control points occur every 9 samples. After obtaining the 'trend' you would of course subtract it off the original time series to detrend it.
s = @(t) cos(2*pi*t).*exp(-abs(2*t))+ 2; %timeseries to fit
cubicBspline = @(t) (t>-1 & t<1).*(2/3 - t.^2 +abs(t).^3/2) +...
(abs(t)>=1 & abs(t)<2).*((2-abs(t)).^3/6);
tCtrlPts=linspace(-1.2, 1.2,9); %CtrlPts sample locations on t-axis
dtCtrlPts=tCtrlPts(2)-tCtrlPts(1);
tFine=linspace(-1.2, 1.2,81); %Fine sample locations on t-axis
dtFine=tFine(2)-tFine(1);
timeseries=s(tFine(:));
%create regression matrix
SampRatio=round(dtCtrlPts/dtFine); %Sampling ratio
kernel=cubicBspline(-2:1/SampRatio:2 );
nCtrlPts=length(tCtrlPts);
A=interpMatrix(kernel, 'max', nCtrlPts, SampRatio, 'mirror');
%%Do the fit!!!
trend = A*(A\timeseries);
plot(tFine,timeseries,tFine,trend,'*-');
legend('Time Series','Fitted Trend')
2 comentarios
Image Analyst
el 8 de Feb. de 2013
Because a spline is an interpolation rather than a regression, and so it goes through all the points, I don't see how it could detrend. Why not use detrend() or sgolay()?
2 comentarios
Ver también
Categorías
Más información sobre Spline Postprocessing en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!