Solving under-determined matrix equations

8 visualizaciones (últimos 30 días)
Subhra
Subhra el 18 de Feb. de 2013
I need to Solve : A1*x+B1*y=c; A2*x+B2*y=d in Matlab where A1, A2, B1 and B2 are m-by-n complex matrices with m<n and rank=m. x, y, c and d are n-by-1 vectors. Hence the system is under-determined. I have seen solution techniques for solving system of equations in the form Ax=b, but how can I apply that to my case? Please let me know..
Thanks in advance S.Paul
  2 comentarios
Youssef  Khmou
Youssef Khmou el 18 de Feb. de 2013
hi, are you sure that x,y,c and are nx1? just to make sure
Subhra
Subhra el 19 de Feb. de 2013
You are right. c and d are m x 1. only x and y are n x 1.

Iniciar sesión para comentar.

Respuestas (1)

Youssef  Khmou
Youssef Khmou el 19 de Feb. de 2013
Editada: Youssef Khmou el 19 de Feb. de 2013
Hi Subhra,
try to check the lengths you assigned to vectors c,d ; Under-determined system means you have more variables and less equations , in your example c and d must be mx1 vectors to get under-determined system : In this case the matrix A is not square and other techniques must be used : like
1)The Moore-Penrose pseudoinverse matrix or
2)The Least squares algorithm , TLS,..etc
Try this example :
m=4;
n=6; % m<n
A1=randn(m,n)+j*randn(m,n);
B1=randn(m,n)+j*randn(m,n);
A2=randn(m,n)+j*randn(m,n);
B2=randn(m,n)+j*randn(m,n);
rank(A1) % rank(A1)=rank(A2)=rank(B1)=rank(B2)
c=rand(m,1);
d=rand(m,1);
% Matrices concatenation to get AX=B
A=[A1 B1;A2 B2]; % size{A} is 2mx2n and rank{A} is 2m .
B=[c;d]; % size{B}is 2mx1
% Solution
% Moore-Penrose pseudoinverse of matrix since A is not square :
X=pinv(A)*B;
error=X*A-B;
% LS
X2=pinv(A'*A)*A'*B;
% Now get x and y :
%x=X(1:4); y=X(5:end);
  4 comentarios
Subhra
Subhra el 19 de Feb. de 2013
Nope. Ok I will see.
Subhra
Subhra el 19 de Feb. de 2013
No! Its not working either. My problem is ill-conditioned.

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by