
Adjacency matrix of a hexagonal graph
23 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Jacek Brodzki
el 10 de Nov. de 2020
Comentada: Jacek Brodzki
el 11 de Nov. de 2020
I am looking for an efficient way to compute the adjacency matrix of a hexagonal graph, so that away from the boundary the graph is 3-regular and its minimal cycles are hexagons. The graph is arranged in a rectangle with n vertices in each row and m rows. My follow on computations require me to represent this matrix as a sum of three separate adjacency matrices: one for the horizontal edges, one for the edges that slant in the 'North West' direction and one for the North East. I give my code below; I need to make the whole computation much quicker (this is one of many elements), so I would welcome any suggestions. Thank you.
%% Hexagonal graph
% This function produces the adjacency matrix of a "rectangular graph" whose cells are hexagons.
% The size of the graph is [n,m], where n is the number of vertices
% on one level and m is the number of levels. The adjacency matrix is
% given in three parts:
% H: the horizontal edges,
% and, looking from the bottom:
% NE: edges slanted "up and right",
% NW: edges slanted "up and left"
function [H,NW,NE] = HexGraphPart(n,m)
GridH = zeros(n*m);
GridNW = zeros(n*m);
GridNE = zeros(n*m);
% NW part:
% odd numbered rows:
for kk = 1:floor(m/2)
for ii = 1:2:n
if (2*kk-1)*n + ii <= n*m
GridNW((2*(kk-1))*n+ii, (2*kk-1)*n + ii) = 1;
end
end
end
% even numbered rows:
for kk = 1:floor(m/2)
for ii = 2:2:n
if 2*kk*n +ii <= n*m
GridNW((2*kk-1)*n + ii , 2*kk*n + ii ) = 1;
end
end
end
% NE part:
% Odd numbered rows:
for kk = 1:floor(m/2)
for ii = 2:2:n
if (2*kk-1)*n + ii <= n*m
GridNE(2*(kk-1)*n+ii, (2*kk-1)*n + ii) = 1;
end
end
end
% Even numbered rows:
for kk = 1:floor(m/2)
for ii = 1:2:n
if 2*kk*n +ii <= n*m
GridNE((2*kk-1)*n + ii , 2*kk*n + ii ) = 1;
end
end
end
% Horizontal edges:
% Odd numbered rows
for kk = 1: ceil(m/2)
for ii = 1:2:n
if 2*(kk-1) +ii +1 <= n*m
GridH(2*(kk-1)*n +ii, 2*(kk-1)*n +ii +1) = 1;
end
end
end
% Even numbered rows:
for kk = 1:floor(m/2)
for ii = 2:2:n-1
if (2*kk-1)*n + ii + 1 <= n*m
GridH((2*kk-1)*n + ii, (2*kk-1)*n + ii + 1) = 1;
end
end
end
H = GridH + transpose(GridH);
NW = GridNW + transpose(GridNW);
NE = GridNE + transpose(GridNE);
end
0 comentarios
Respuesta aceptada
Bruno Luong
el 10 de Nov. de 2020
Editada: Bruno Luong
el 10 de Nov. de 2020
[A,B,C] = HexGraphPart2(7,8);
G = graph(A+B+C);
figure;
plot(G);
function [H,NW,NE]=HexGraphPart2(m,n)
[I,J]=ndgrid(1:m,1:n);
K = I + (J-1)*m;
p=m*n;
H = sparse(K(1:2:end-1,1:2:end),K(2:2:end,1:2:end),1,p,p) + ...
sparse(K(2:2:end-1,2:2:end),K(3:2:end,2:2:end),1,p,p);
NW = sparse(K(1:2:end,1:2:end-1),K(1:2:end,2:2:end),1,p,p) + ...
sparse(K(2:2:end,2:2:end-1),K(2:2:end,3:2:end),1,p,p);
NE = sparse(K(1:2:end,2:2:end-1),K(1:2:end,3:2:end),1,p,p) + ...
sparse(K(2:2:end,1:2:end-1),K(2:2:end,2:2:end),1,p,p);
H=H+H';
NW=NW+NW';
NE=NE+NE';
end

NOTE:1 Your code is buggy with certain combination of m/n
NOTE2: the code can be simplied !if you only need A+B+C
6 comentarios
Bruno Luong
el 11 de Nov. de 2020
Lower case y is a horizontal vector, x is vertical vector. Upper-case Y depends only y, but I need it as 2D array, thus + 0*x to expand it. You could use repmat, repelem as well if the trick perturbs you.
Más respuestas (1)
Jacek Brodzki
el 10 de Nov. de 2020
1 comentario
Bruno Luong
el 10 de Nov. de 2020
I believe the bug is related to odd/even characteristics of m and n, and not because they are small or large. I haven't try to look carefully your code.
Ver también
Categorías
Más información sobre Graph and Network Algorithms en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

