repeat large number of vector elements

1 visualización (últimos 30 días)
Yufan Miao
Yufan Miao el 20 de Feb. de 2013
Editada: Jan el 27 de Dic. de 2015
Hi, I have a vector storing only unique values: v = (0, 1, 2), and another vector about frequency of the unique values: c = (3, 2, 4). Now I want to create a new vector with repeated values as follows:
v2 = (0, 0, 0, 1, 1, 2, 2, 2, 2)
Since both vectors v and c are very large, how to efficiently derive v2 in matlab. Many thanks.
  1 comentario
Jan
Jan el 20 de Feb. de 2013
Please specify "very large" explicitly: Some users tell 1000 elements large, others need billions for this term.

Iniciar sesión para comentar.

Respuestas (5)

Jan
Jan el 20 de Feb. de 2013
Editada: Jan el 20 de Feb. de 2013
This is a run-length encoding. A standard decoding:
v = [0, 1, 2];
c = [3, 2, 4];
d = cumsum(c);
index = zeros(1, d(end));
index(d(1:end-1)+1) = 1;
index(1) = 1;
index = cumsum(index);
result = v(index);

Azzi Abdelmalek
Azzi Abdelmalek el 20 de Feb. de 2013
Editada: Azzi Abdelmalek el 21 de Feb. de 2013
v=[0 1 2];
c=[3,2,4];
out=cell2mat(arrayfun(@(x) repmat(v(x),1,c(x)),1:numel(v),'un',0))
EDIT
i1=0;
out=zeros(1,sum(c));
for k=1:numel(v)
i0=i1+1;
i1=i0+c(k)-1;
out(i0:i1)=v(k)*ones(1,c(k));
end
  5 comentarios
Azzi Abdelmalek
Azzi Abdelmalek el 20 de Feb. de 2013
It seems that ones(1,n)*v is faster then repmat
Youssef  Khmou
Youssef Khmou el 20 de Feb. de 2013
right, 0.0054s with repmat, and 0.0027s with ones(1,n)

Iniciar sesión para comentar.


Youssef  Khmou
Youssef Khmou el 20 de Feb. de 2013
Editada: Youssef Khmou el 20 de Feb. de 2013
for i=1:length(c)
V{i}=(i-1)*ones(c(i),1);
end
f=cell2mat(V(:))'

Jan
Jan el 21 de Feb. de 2013
Editada: Jan el 21 de Feb. de 2013
Some timings (R2009a/64/Win7/Core2Duo):
x = rand(1, 10000);
n = randi([0,10], 1, 10000);
tic; for k=1:100; r=runlength(x,n); end; toc
% With runlength() is a function with the following contents:
% Azzi's ARRAYFUN approach:
r = cell2mat(arrayfun(@(k) repmat(x(k), 1, n(k)), 1:numel(x), 'un', 0))
Elapsed time is 48.976947 seconds.
% Azzi's approach from the comment section: [EDITED start]
Elapsed time is 2.674559 seconds.
% Azzi's approach from the comment section with slight modification:
i1 = 0;
result = zeros(1, sum(c));
for k = 1:numel(v)
i0 = i1+1;
i1 = i0 + c(k) - 1;
result(i0:i1) = v(k); % Without "*ones(1,c(k))" !!
end
Elapsed time is 1.656987 seconds. [EDITED end]
% Youssef' approach:
V = cell(1, length(n));
for k = 1:length(n)
V{k} = x(k) * ones(n(k), 1); % With x(k) instead of (i-1)
end
r = cell2mat(V(:))'
Elapsed time is 1.422626 seconds
% The CUMSUM method from my former answer:
Elapsed time is 0.083854 seconds.
% An equivalent MEX implementation:
Elapsed time is 0.025775 seconds.
Conclusions:
  • ARRAYFUN and the anonymous function is not efficient compared to a simple loop. Therefore I suggest to avoid this combination strictly.
  • Collecting the single parts in a cell is a good idea. Then CELL2MAT can be replaced by the faster FEX: Cell2Vec : 0.97 sec
  • Creating the large temporary vectors cumsum(x) and index seem to be not as bad as I was afraid. The C-MEX is not a dramatic enhancement anymore.
  2 comentarios
Azzi Abdelmalek
Azzi Abdelmalek el 21 de Feb. de 2013
You missed the code hiden in the comment.
Jan
Jan el 21 de Feb. de 2013
Editada: Jan el 21 de Feb. de 2013
Yes, Azzi, I haven't seen it. It is much faster, especially when the multiplication with ONES is omitted. A good improvement compared to ARRAYFUN!
I do not understand why this is slower than collecting the partial vectors in a cell array at first. It looks much more efficient.

Iniciar sesión para comentar.


irina mihai
irina mihai el 6 de Dic. de 2015
Jan, Azzi Thanks for your help ! I used the cumsum function and the v(index) idea which i didn't know. I have a very large database (over 10^6 lines) and I was looking for something like this. Brilliant !
  1 comentario
Jan
Jan el 6 de Dic. de 2015
Editada: Jan el 27 de Dic. de 2015
See repelem in modern Matlab versions and FEX: RunLength, which is about twice as fast as repelem.

Iniciar sesión para comentar.

Categorías

Más información sobre Loops and Conditional Statements en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by