Finding all possible row combinations of a matrix that add to zero

1 visualización (últimos 30 días)
Hello,
I'm looking for a general way to find all possible row combinations of a matrix that add to zero.
For instance, for the matrix
A = [-1 0 0 ; 1 0 0 ; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
the following 6 row combinations would all sum to zero
A(1,:)+A(2,:)
A(1,:)+A(3,:)+A(4,:)+A(6,:)
A(1,:)+A(3,:)+A(5,:)+A(6,:)
-A(2,:)+A(3,:)+A(4,:)+A(6,:)
-A(2,:)+A(3,:)+A(5,:)+A(6,:)
-A(4,:)+A(5,:)
Does MATLAB have any built-in functions that can help me do this? Generating all possible row combinations and testing to see which ones sum to zero seems like it would be extremely computationally intensive.
Thanks,
Kevin

Respuesta aceptada

Azzi Abdelmalek
Azzi Abdelmalek el 21 de Feb. de 2013
Editada: Azzi Abdelmalek el 21 de Feb. de 2013
Edit2
A = [-1 0 0 ; 1 0 0 ; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1);
idx=logical(npermutek([0 1],n));
p=size(idx,1);
out=cell(p,1);
for k=1:p
out{k}=sum(A(idx(k,:),:),1);
end
You can get you sum in a matrix 647x3
M=cell2mat(out)
  5 comentarios
Azzi Abdelmalek
Azzi Abdelmalek el 21 de Feb. de 2013
Editada: Azzi Abdelmalek el 21 de Feb. de 2013
There is another error, it's
sum(A(idx(k,:),:),1)
instead of
sum(A(idx(k,:),:)
Look at the second Edit
Kevin Bachovchin
Kevin Bachovchin el 21 de Feb. de 2013
Editada: Kevin Bachovchin el 21 de Feb. de 2013
Ok, it works now, but the code doesn't seem to pick up on solutions that involve subtraction.
The following should also be solutions -A(2,:)+A(3,:)+A(4,:)+A(6,:)
-A(2,:)+A(3,:)+A(5,:)+A(6,:)
-A(4,:)+A(5,:)

Iniciar sesión para comentar.

Más respuestas (4)

Azzi Abdelmalek
Azzi Abdelmalek el 21 de Feb. de 2013
Editada: Azzi Abdelmalek el 21 de Feb. de 2013
Ok try this
Edit
A = [-1 0 0 ;1 0 0; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1)
idx1=npermutek([0 -1 1],n);
p=size(idx1,1);
out=cell(p,1);
for k=1:p
out{k}=sum(bsxfun(@times,A,idx1(k,:)'),1);
end
M=cell2mat(out)
find(~any(M,2))
  10 comentarios
Azzi Abdelmalek
Azzi Abdelmalek el 21 de Feb. de 2013
Ok, You did not specify that in your question. You should give all information in your question to avoid wasting of time.
Kevin Bachovchin
Kevin Bachovchin el 21 de Feb. de 2013
Sorry, the issue with sums of solutions didn't occur to me until I saw it. Seems like there is no difference in the result of the code from before though. Still 17 elements in find(~any(M,2)).

Iniciar sesión para comentar.


Jan
Jan el 21 de Feb. de 2013

Azzi Abdelmalek
Azzi Abdelmalek el 21 de Feb. de 2013
Try this
A = [-1 0 0 ;1 0 0; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1)
idx1=npermutek([0 -1 1],n);
p=size(idx1,1);
out=cell(p,1);
for k=1:p
out{k}=sum(bsxfun(@times,A,idx1(k,:)'),1);
end
M=cell2mat(out)
ii=find(~any(M,2))
idx2=idx1(ii,:)
for k=1:size(idx2,1)
jj{k}=find(idx2(k,:))
end
for k=1:numel(jj)
iddx{k}=find(cellfun(@(x) isequal(x,jj{k}),jj))
ee(k)=iddx{k}(1)
end
result=idx2(unique(ee),:)
  1 comentario
Kevin Bachovchin
Kevin Bachovchin el 21 de Feb. de 2013
This fixed the problem of both positives and negatives being solutions (ie, A1+A2 and -A1-A2). One thing it did not fix is sums of individual solutions being solutions (for instance, since -A1-A2 and -A4+A5 are both solutions, then -A1-A2-A4+A5 is also given as a solution but this solution is unwanted for my specific purpose because it corresponds to a non-physical solution for my application.)

Iniciar sesión para comentar.


Azzi Abdelmalek
Azzi Abdelmalek el 22 de Feb. de 2013
Editada: Azzi Abdelmalek el 22 de Feb. de 2013
Try this code
A = [-1 0 0 ;1 0 0; 1 -1 0 ; 0 1 -1 ; 0 1 -1; 0 0 1];
n=size(A,1)
idx1=npermutek([0 -1 1],n);
p=size(idx1,1);
out=cell(p,1);
for k=1:p
out{k}=sum(bsxfun(@times,A,idx1(k,:)'),1);
end
M=cell2mat(out);
ii=find(~any(M,2));
idx2=idx1(ii,:);
for k=1:size(idx2,1);
jj{k}=find(idx2(k,:));
end
for k=1:numel(jj);
iddx{k}=find(cellfun(@(x) isequal(x,jj{k}),jj));
ee(k)=iddx{k}(1);
end
result=idx2(unique(ee),:);
n=size(result,1);
test=0;
ii=1;
while test==0
ii=ii+1;
a=find(result(ii,:));
c=result(ii,a);
e=result(:,a);
f=find(ismember(e,c,'rows'));
f(1)=[];
if ~isempty(f);
result(f,:)=[];
n=n-1;
end
if ii==n-1
test=1;
end
end
result

Categorías

Más información sobre Logical en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by