approximation using neural networks and genetic algorithm

1 visualización (últimos 30 días)
Caroline
Caroline el 13 de Nov. de 2020
Editada: Geoff Hayes el 14 de Nov. de 2020
Hi!
I have data (f and N) that I would like to approximate with neural networks - different models for comparison.
Unfortunately, the approximation does not go very well (sometimes bad -test3), I read that using a genetic algorithm to search for weights will help, but I don't know how to do it. The solutions I found did not work.
Thank you for your help.
Code:
f=[0.17;0.48;1.92;2.1;2.25;2.43;2.96;3.86;4.04;4.2;4.37;4.54;4.71;4.87;5.02;5.2;5.36;5.88;6.07;7;7.17;7.49];
N=[-7.27791153646116;-4.29447422767624;-1.31519435701671;-0.420378554933457;1.51876122541888;3.37415903840721;7.37403792249666;24.2818268109931;28.9317522443841;29.8116525599092;35.7158743318026;37.8450891366452;42.8764997674267;42.8847851582810;44.2075712022168;53.8642579111545;58.5925579051624;62.5892730901203;69.0253611093354;69.2368619096259;77.4202507027924;76.2374765137714];
plot(f,N);
hold on
model =["trainlm" "trainscg" "trainbr" "traingda"];
nf = f.';
nN = N.';
net = feedforwardnet(10);
net = configure(net,nf,nN);
for i= 1:4
net.trainFcn = model(1,i);
net1 = train(net,nf,nN);
NN = net1(nf);
NN=NN';
plot (nf,NN)
end
hold off
xlabel('{\it f} [Hz]','FontSize',12); ylabel('{\it N} [mN]','FontSize',12);
legend({'data','net lm','net scg','net br','net gda'}, 'Location','eastoutside');
title('approximation using neural networks','Fontsize',14);

Respuestas (0)

Categorías

Más información sobre Genetic Algorithm en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by