Numerical integration of an ODE?
15 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hey! I'm trying to integrate the following 2nd order ODE:
from time t=0 to any random time, say t=50 seconds
ω and A are constants.
I need to integrate the above equation twice, numerically. Any idea how i can do this and what method i'll be using?
thanks
2 comentarios
John D'Errico
el 14 de Nov. de 2020
Read the help for ODE45. You will find examples in there.
doc ode45
riccardo
el 16 de Nov. de 2020
Why numerically ?
If A and w are constants, x(t) = A*sin(w*t) is surely the primitive (plus initial conditions if not zero).
Respuestas (1)
Priyanka Rai
el 18 de Nov. de 2020
To be able to integrate 2nd Order ODE numerically you can use the following methods, based on your use case:
- If function f is to be integrated, then for definite integral you can use
int(f, a, b)
2. Numerically evaluate double integral
q = integral2(fun,xmin,xmax,ymin,ymax)
approximates the integral of the function z = fun(x,y) over the planar region xmin ≤ x ≤ xmax and ymin(x) ≤ y ≤ ymax(x).
Numerical integration functions can approximate the value of an integral whether or not the functional expression is known.When you know how to evaluate the function, you can use integral to calculate integrals with specified bounds.
You can refer to this blog for more information as well: https://blogs.mathworks.com/loren/2014/02/12/double-integra tion-in-matlab-methods-and-handling-discontinuities-singularities-and-more/
0 comentarios
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!