How do I create an open class classifier
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I am calling function kNN_model_add_class to trained and create one class call dogs.
How do I create an 'Open class' where there will be all the other sounds(i do not want to specify them just all the other)
I am trying to make One vs all classifier.. Dog or no Dog
Thanks
strDir = 'C:\Users\User\Desktop\3rd year\Nahravky\cats_dogs';
Statistics = {'mean', 'median', 'std', 'stdbymean', 'max', 'min'};
stWin = 0.040;
stStep = 0.040;
mtWin = 2;
mtStep = 1;
kNN_model_add_class('Mfcctrain.mat', 'dogs', [ strDir '\trainpes'], ...
Statistics, stWin, stStep, mtWin, mtStep);
function kNN_model_add_class
function kNN_model_add_class(modelName, className, classPath, ...
listOfStatistics, stWin, stStep, mtWin, mtStep)
%
% function kNN_model_add_class(modelName, className, classPath, ...
% listOfStatistics, stWin, stStep, mtWin, mtStep)
%
% This function adds an audio class to the kNN classification model
%
% ARGUMENTS;
% - modelName: the filename of the model (mat file)
% - className: the name of the audio class to be added to the model
% - classPath: the path of the directory where the audio segments of the
% new class are stored
% - listOfStatistics: list of mid-term statistics (cell array)
% - stWin, stStep: short-term window size and step
% - mtWin, mtStep: mid-term window size and step
%
% Example:
% kNN_model_add_class('modelSpeech.mat', 'speech', './Music/', ...
% {'mean','std',}, 0.050, 0.025, 2.0, 1.0);
%
if ~exist(classPath,'dir')
error('Audio sample path is not valid!');
else
classPath = [classPath filesep];
end
% check if the model elaready exists:
fp = fopen(modelName, 'r');
if fp>0 % check if file already exists
load(modelName);
end
% Feature extraction:
D = dir([classPath '*.wav']);
F = [];
for (i=1:length(D)) % for each wav file in the given path:
curFileName = [classPath D(i).name];
FileNamesTemp{i} = curFileName;
% mid-term feature extraction for each wav file:
[data, fs] = audioread(curFileName);
signal = struct('Filt_data', data, 'SampleRate', fs);
midFeatures = featureExtractionFile(signal, ...
stWin, stStep, mtWin, mtStep, listOfStatistics);
% midFeatures = featureExtractionFile(curFileName, ...
% stWin, stStep, mtWin, mtStep, listOfStatistics);
% long-term averaging:
longFeatures = mean(midFeatures,2);
F = [F longFeatures];
end
% save the model:
Statistics = listOfStatistics;
fp = fopen(modelName, 'r');
if fp<0 % model does not exist --> generate
ClassNames{1} = className;
Features{1} = F;
FileNames{1} = FileNamesTemp;
save(modelName, 'ClassNames', 'Features', ...
'Statistics', 'stWin', 'stStep', 'mtWin', 'mtStep', 'FileNames');
else
load(modelName);
ClassNames{end+1} = className;
Features{end+1} = F;
FileNames{end+1} = FileNamesTemp;
save(modelName, 'ClassNames', 'Features', ...
'Statistics', 'stWin', 'stStep', 'mtWin', 'mtStep', 'FileNames');
end
6 comentarios
Walter Roberson
el 18 de Nov. de 2020
You do not create an open class. A specific open class would have to be trained as having particular characteristics, and anything that did not have those characteristics would not match.
Instead you define a threshold for matching each of your defined classes, and if the image does not meet the threshold for any of the defined classes then you say that it is Other.
Respuestas (0)
Ver también
Categorías
Más información sobre Pretrained Models en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!