How to optimize the multiplication of large matrices in Matlab?
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
John
el 8 de Mzo. de 2013
Comentada: Ken
el 18 de Nov. de 2016
I have 2 matrices A, B, and vector C that I need to multiply. They are fairly large.
Matrix A = 10000x10000
Matrix B = 10000x10000
Vector C = 10000x1
If I perform A*B*C, this takes a long time so I used sparse function which collapses the matrices/vectors by removing large number of zeros then I convert it back to a full matrix.
full(sparse(A)*sparse(B)*sparse(C))
It's faster but I was wondering if there are more efficient techniques for multiplying them together. Would it be better to write for loops?
Secondly, some of the elements in my matrix have values close to zero so I can replace these with zeroes before converting them to sparse matrices. What's the best way to do this?
0 comentarios
Respuesta aceptada
James Tursa
el 8 de Mzo. de 2013
Force the matrix-vector multipy to happen first. E.g.,
A*(B*C)
2 comentarios
Más respuestas (2)
Sean de Wolski
el 8 de Mzo. de 2013
I doubt you'll be able to get anything faster than the highly optimized BLAS libraries that MATLAB uses to perform matrix arithmetic. The only thing I've heard of that might be faster is mtimesx on the FEX and even that, I've never reproduced.
0 comentarios
per isakson
el 8 de Mzo. de 2013
Editada: per isakson
el 8 de Mzo. de 2013
Your second question:
A( A < small_number ) = 0;
or better
A( abs(A) < small_number ) = 0;
2 comentarios
Ver también
Categorías
Más información sobre Sparse Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!