Multiplying by inverse of a matrix

40 visualizaciones (últimos 30 días)
JPF
JPF el 27 de Nov. de 2020
Comentada: JPF el 27 de Nov. de 2020
Hello,
I want to calculate where α is a scalar (it's for calculating the estimated variance of a parameter). Using
alpha*inv(X'X)
gives the correct results but (a) Matlab suggest not doing so (although the backward slash gives the wrong results) and (b) I've always avoided multiplying by the inverse of a matrix due to potential inaccuracy.
Is there a better way?
Thank you
  2 comentarios
J. Alex Lee
J. Alex Lee el 27 de Nov. de 2020
can you give example values of alpha and X?
JPF
JPF el 27 de Nov. de 2020
For example,
alpha = 0.5;
X = [0.6 0.9; 0.9 0.5];
For this I obtain
alpha\(X'*X) = [2.34 2; 2 2.2]
alpha*inv(X'*X) = [2.04 -1.9; -1.9 2.2]

Iniciar sesión para comentar.

Respuesta aceptada

James Tursa
James Tursa el 27 de Nov. de 2020
Editada: James Tursa el 27 de Nov. de 2020
You are essentially "dividing" by the X'*X quantity, so that is what needs to appear on the "bottom" of the slash. E.g.,
>> alpha = 0.5;
>> X = [0.6 0.9; 0.9 0.5];
>> alpha*inv(X'*X)
ans =
2.0377 -1.9031
-1.9031 2.2491
>> (X'*X)\eye(2)*alpha
ans =
2.0377 -1.9031
-1.9031 2.2491
>> alpha*eye(2)/(X'*X)
ans =
2.0377 -1.9031
-1.9031 2.2491
Or you can think of it this way. Start with this definition:
inv(X'*X) * (X'*X) = eye(2)
and solve for the inverse:
inv(X'*X) = eye(2)/(X'*X)
Similarly, starting with this definition:
(X'*X) * inv(X'*X) = eye(2)
yields
inv(X'*X) = (X'*X)\eye(2)
Then just multiply by alpha.
  1 comentario
JPF
JPF el 27 de Nov. de 2020
That's great, thank you. I was thrown off by Matlab's recommendation that I just used the backward slash.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Function Creation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by