Efficient Method for Multiple Gridded Interpolation
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have scattered points of rain guage stations with random missing values. I also have NDVI values at these stations (complete records). The data is from January -Decemeber, 2016.
I want to interpolate both variables indepedently at daily time scale excluding any NaN stations for BOTH variables (i.e. exclude Nan from rainfall and corresponding NDVI). They will be saved as a Geotiff. This is my code for a single grid.
I want to do this in a loop with NaN excluded at each time step.
%%% load data
load data_now.dat
[lon,lat] = ndgrid(lon,lat);
lonobs = data_now(:,1);
latobs = data_now(:,2);
J= data_now(:,3);
G=data_now(:,4)
% lon and lat are read from a netcdf file
lon = ncread('important_gh.nc','lon');
lat = ncread('important_gh.nc','lat');
%Interpolate
Rainq = griddata(latobs,lonobs,J,lat,lon);
NDVIq = griddata(latobs,lonobs,G,lat,lon);
Thanks
0 comentarios
Respuestas (1)
Sindar
el 30 de Nov. de 2020
I don't know how fast it will be, but I think this'll work
% lon and lat are read from a netcdf file
lon = ncread('important_gh.nc','lon');
lat = ncread('important_gh.nc','lat');
[lon,lat] = ndgrid(dl.lon,dl.lat);
data_files = ...
for ind=1:length(data_files)
% load into a variable
data_now = load(data_files{ind});
lonobs = data_now(:,1);
latobs = data_now(:,2);
J= data_now(:,3);
G= data_now(:,4);
% find valid locations
idx = (~isnan(J)) & (~isnan(G));
%Interpolate, dropping nan locations
Rainq = griddata(latobs(idx),lonobs(idx),J(idx),lat,lon);
NDVIq = griddata(latobs(idx),lonobs(idx),G(idx),lat,lon);
% save
end
0 comentarios
Ver también
Categorías
Más información sobre NetCDF en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!