below you find the data I am reffering to
K PC Price T date r moneyness
1160 1 111.95 0.052055 734506 0.0026425 1.09512931
1165 1 107 0.052055 734506 0.0026425 1.090429185
1170 1 102.1 0.052055 734506 0.0026425 1.085769231
1175 1 97.35 0.052055 734506 0.0026425 1.081148936
1180 1 92.45 0.052055 734506 0.0026425 1.076567797
1185 1 87.6 0.052055 734506 0.0026425 1.072025316
1190 1 82.75 0.052055 734506 0.0026425 1.067521008
1195 1 78 0.052055 734506 0.0026425 1.063054393
1200 1 73.2 0.052055 734506 0.0026425 1.058625
1205 1 68.45 0.052055 734506 0.0026425 1.054232365
1210 1 63.8 0.052055 734506 0.0026425 1.049876033
1215 1 59.15 0.052055 734506 0.0026425 1.045555556
1220 1 54.6 0.052055 734506 0.0026425 1.041270492
1225 1 49.75 0.052055 734506 0.0026425 1.037020408
1230 1 45.7 0.052055 734506 0.0026425 1.032804878
1235 1 41.4 0.052055 734506 0.0026425 1.028623482
1240 1 37.2 0.052055 734506 0.0026425 1.024475806
1245 1 33.15 0.052055 734506 0.0026425 1.020361446
1250 1 29.3 0.052055 734506 0.0026425 1.01628
1255 1 25.55 0.052055 734506 0.0026425 1.012231076
1260 1 22.05 0.052055 734506 0.0026425 1.008214286
1265 1 18.8 0.052055 734506 0.0026425 1.004229249
1270 1 15.75 0.052055 734506 0.0026425 1.000275591
1275 1 13.05 0.052055 734506 0.0026425 0.996352941
1280 1 10.65 0.052055 734506 0.0026425 0.992460938
1285 1 8.55 0.052055 734506 0.0026425 0.988599222
1200 1 70.6 0.049315 734507 0.0026411 1.05624975
1205 1 65.7 0.049315 734507 0.0026411 1.051866971
1210 1 61.25 0.049315 734507 0.0026411 1.047520413
1215 1 56.55 0.049315 734507 0.0026411 1.04320963
1220 1 52.15 0.049315 734507 0.0026411 1.03893418
1225 1 47.55 0.049315 734507 0.0026411 1.034693633
1230 1 43.4 0.049315 734507 0.0026411 1.030487561
1235 1 39.05 0.049315 734507 0.0026411 1.026315547
1240 1 34.85 0.049315 734507 0.0026411 1.022177177
1245 1 31.2 0.049315 734507 0.0026411 1.018072048
1250 1 27.1 0.049315 734507 0.0026411 1.01399976
1255 1 23.75 0.049315 734507 0.0026411 1.00995992
1260 1 20.3 0.049315 734507 0.0026411 1.005952143
1265 1 16.9 0.049315 734507 0.0026411 1.001976047
1270 1 13.4 0.049315 734507 0.0026411 0.99803126
1275 1 11.4 0.049315 734507 0.0026411 0.994117412
1280 1 9.25 0.049315 734507 0.0026411 0.990234141
1285 1 7.2 0.049315 734507 0.0026411 0.986381089
1290 1 5.8 0.049315 734507 0.0026411 0.982557907
1295 1 4.25 0.049315 734507 0.0026411 0.978764247
1300 1 3.3 0.049315 734507 0.0026411 0.974999769
1305 1 2.5 0.049315 734507 0.0026411 0.971264138
1310 1 1.875 0.049315 734507 0.0026411 0.967557023
1315 1 1.15 0.049315 734507 0.0026411 0.963878099
1320 1 1.05 0.049315 734507 0.0026411 0.960227045
1325 1 0.65 0.049315 734507 0.0026411 0.956603547
1330 1 0.55 0.049315 734507 0.0026411 0.953007293
1155 1 116.9 0.12603 734507 0.0029711 1.095887706
1160 1 112.3 0.12603 734507 0.0029711 1.091164052
1165 1 107.55 0.12603 734507 0.0029711 1.086480944
1170 1 103.1 0.12603 734507 0.0029711 1.081837863
1175 1 98.35 0.12603 734507 0.0029711 1.077234298
1180 1 93.95 0.12603 734507 0.0029711 1.072669746
1185 1 89.6 0.12603 734507 0.0029711 1.068143713
1190 1 85.2 0.12603 734507 0.0029711 1.063655714
1195 1 81 0.12603 734507 0.0029711 1.059205272
1200 1 76.6 0.12603 734507 0.0029711 1.054791917
1205 1 72.35 0.12603 734507 0.0029711 1.050415187
1210 1 68.4 0.12603 734507 0.0029711 1.046074628
1215 1 64.55 0.12603 734507 0.0029711 1.041769794
1220 1 60 0.12603 734507 0.0029711 1.037500246
1225 1 56.75 0.12603 734507 0.0029711 1.033265551
1230 1 52.2 0.12603 734507 0.0029711 1.029065285
1235 1 48.6 0.12603 734507 0.0029711 1.024899028
1240 1 45.15 0.12603 734507 0.0029711 1.020766371
1245 1 41.75 0.12603 734507 0.0029711 1.016666908
1250 1 38.65 0.12603 734507 0.0029711 1.01260024
1255 1 34.95 0.12603 734507 0.0029711 1.008565976
1260 1 32.05 0.12603 734507 0.0029711 1.00456373
1265 1 28.7 0.12603 734507 0.0029711 1.000593123
1270 1 25.4 0.12603 734507 0.0029711 0.99665378
1275 1 23.35 0.12603 734507 0.0029711 0.992745333
1280 1 20.4 0.12603 734507 0.0029711 0.988867422
1285 1 18.1 0.12603 734507 0.0029711 0.985019689
1290 1 16.55 0.12603 734507 0.0029711 0.981201783
1295 1 14.1 0.12603 734507 0.0029711 0.977413359
1300 1 12 0.12603 734507 0.0029711 0.973654077
I need to find the element where the first column on the left (K) is the same and additionally the data is obtained from the next date (for example the first date is 734506 and K= 1200, so I am looking for the row in which K=1200 occcurs at day 734507 and so on). For K=1200 on day 734507 I need to row of K=1200 on day 734507. From what I can see it's not possible to compute that based on the two criteria date and K, because for one date there are several K's, but it should be possible for the time to maturity (T). T is computed usind numbers of days outstanding/366 and the difference between T of two options between two weekdays is 1/366. So what I am looking for is a way how I can find for the same strike (K) the option which has one day less time to maturity T (T(1)= T(0)-1/366) the difficulties is, that in the sample there are just trading days that means it's possible that between two datapoints there are three days and no just one. are there ways to do that? at least to know how to get the number of the row in which the next value with the same strike and another criteria which is the same would help me a lot.
thanks!