neural network with bayesian regularization: find weights and biases and recalculate the network
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Michael Arnold
el 11 de Dic. de 2020
Editada: Michael Arnold
el 15 de Dic. de 2020
Hey,
i´m trying to use a neural network to guess functional values for unknown points. This is my current solution.
%target f(x)=(x^2 + 22*x - 100)/(4*x)
%for x = [2,9]
inputall = 2:0.01:9;
outputall = (inputall.^2+22*inputall-100)./(4*inputall);
%training data
inputtrain = 2:1:9;
outputtrain = (inputtrain.^2+22*inputtrain-100)./(4*inputtrain);
%neural network
neurons = 5;
net = feedforwardnet(neurons,'trainbr');
net = train(net,inputtrain,outputtrain);
%prediction
predict(1,:) = net(inputall);
%comparison
comp = [outputall' predict']
%visualization
figure('Name','comparison'); hold on;
plot(inputall,outputall);
plot(inputall,predict)
Now I want to know what weights and biases the network finaly used. How can i get them and is it possible to use them to recalculate by myself the solution of the network?
Best regards
Michael
0 comentarios
Respuesta aceptada
Sai Veeramachaneni
el 15 de Dic. de 2020
Hi,
You can use net.IW, net.LW, net.b properties of neural network object to get weights and biases used in the network.
References:
1 comentario
Michael Arnold
el 15 de Dic. de 2020
Editada: Michael Arnold
el 15 de Dic. de 2020
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!