solving the Korteweg-de Vries equation in Matlab
    7 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
Hey,
I'm trying to solve the Korteweg-de Vries -  in matlab using ode45 and fft, but my code is very inefficient and I figure out why. The odefunc is
 in matlab using ode45 and fft, but my code is very inefficient and I figure out why. The odefunc is
 in matlab using ode45 and fft, but my code is very inefficient and I figure out why. The odefunc is
 in matlab using ode45 and fft, but my code is very inefficient and I figure out why. The odefunc isfunction dydt = kdv(y,k)
        % du/dt = -d3u/dx3 - 6u du/dx
        % numerically approximates the derivative in the fourier domain
        yhat = fft(y);
        dyhat = 1i*k.*yhat;
        d3yhat = -1i*(k.^3).*yhat;
        dy = ifft(dyhat);
        d3y = ifft(d3yhat);
        dydt = - d3y - 6*(y.*dy);
end
and then I call it using
[t,U] = ode45(@(t,y)kdv(y,k),tspan, y0);
but even for very small arrays it takes forever to run. I tried timing each step becuase I suspected that evaluating the fourier transform every iteration is the reason for the inefficiency, but it turns out that this part of the code runs quite fast and the bulk of the computtion time is in ode45 computations between steps.
Any suggestions are appriciated!
3 comentarios
  Rahul
 el 17 de En. de 2025
				You are right. The FFT turns it into a ordinary differentuial equation..

the code below does not work , i suspect the problem is  in the conv() part
L = 100;
N = 1000;
dx = L/N;
x = -L/2:dx:L/2-dx;
kappa = (2*pi/L)*(-N/2 : N/2-1);
kappa = fftshift(kappa);
u0 = sech(x);
t = 0:0.1:10;
[t,uhat] = ode45(@(t,uhat)kortewegdevries(t,uhat,kappa),t,fft(u0));
for k = 1:length(t)
    u(k,:)= ifft(uhat(k,:));
end
figure, waterfall( (u(1:10:end,:)));
figure, imagesc( flipud(u));
function duhatdt = kortewegdevries(t,uhat,kappa)
duhatdt = -1i*(kappa.^3)'.*uhat + conv(uhat,1i*kappa.*uhat); % -(kappa.^2)'.*uhat;%
end
Respuestas (0)
Ver también
Categorías
				Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


