PID Matlab scripts is not running
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
%Closed loop Algorthim
%Error=Setpoint -Feedback
%Setpoint:5
%Feedback:0,1,2,3,4,5(my assumption)
previous_error=0;
integral=0;
kp=1;
ki=1;
kd=1;
sp=[5,5,5,5,5,5];
fb=[0,1,2,3,4,5];
error=[5,4,3,2,1,0];
dt=[0,1,2,3,4,5]
error=sp-fb
integral=(integral + error) * dt
derivative= (error - previous_error) / dt
output=(er*kp)+(ki*integral)+(kd*derivative)
previous_error= error
plot(output,dt)
0 comentarios
Respuestas (1)
Walter Roberson
el 31 de Dic. de 2020
Change all * to .* and all / to ./
1 comentario
Walter Roberson
el 31 de Dic. de 2020
format long g
%Closed loop Algorthim
%Error=Setpoint -Feedback
%Setpoint:5
%Feedback:0,1,2,3,4,5(my assumption)
previous_error=0;
integral=0;
kp=1;
ki=1;
kd=1;
sp=[5,5,5,5,5,5];
fb=[0,1,2,3,4,5];
error=[5,4,3,2,1,0];
dt=[0,1,2,3,4,5]
error=sp-fb
integral=(integral + error) .* dt
derivative= (error - previous_error) ./ (dt+(dt==0)/5)
output=(error.*kp)+(ki.*integral)+(kd.*derivative)
previous_error= error
plot(dt,output)
The (dt+(dt==0)/5) clause is effectively: dt if dt is non-zero, 1/5 if dt is zero. It is there to prevent division by 0, which would give infinity. The 1/5 was chosen arbitrarily to not skew the plot too high but stil emphasize that the value is much higher than the others.
Ver también
Categorías
Más información sobre PID Controller Tuning en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
