Indefinite integrals of bessel function
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Rahul Gandhi
el 5 de En. de 2021
Comentada: Rahul Gandhi
el 6 de En. de 2021
I have this function that has bessel functions which has to be integrated from infinity to 0 and plot the graph between Fy and r.
Matlab returns NaN as output.

mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
syms q
r=linspace(-10*10^-3,10*10^-3,20)
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F=integral(func,inf,0)
plot(r,F)
%Edited:-Forgot to place F in plot.
4 comentarios
David Goodmanson
el 6 de En. de 2021
Hi Rahul,
Compared to the expression you posted, it looks func is missing a factor of epsilon. But a much more serious issue is, what happened to the factor of 1/q?
Respuesta aceptada
Walter Roberson
el 5 de En. de 2021
you need ArrayValued option for integrate()
2 comentarios
Walter Roberson
el 5 de En. de 2021
mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
r=linspace(-10*10^-3,10*10^-3,20)
syms q
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F = vpaintegral(func(q), q, inf, 0);
plot(r,F, 'b*-')
Más respuestas (0)
Ver también
Categorías
Más información sobre Bessel functions en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
