How to remove DC component in FFT?
85 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Wakeel Mohammed
el 9 de En. de 2021
Comentada: Ajith Kumar
el 6 de En. de 2025
I succesfully plotted my FFT with MATLAB discussion help. Now I could not remove the DC component at 0Hz. Which shows me a very high amplitude. Can any one suggest me an idea?
data1 = xlsread('Reading 1.xlsx') ; %Loading Sensor data from Excel file
t = data1 (1:512,2); %Selecting Time vector
s = data1 (1:512,3); %Selecting Z axis vibrations
L = numel(t); %Signal length
Ts = mean(diff(t)); %Sampling interval
Fs = 1/Ts; %Sampling frequency
Fn = Fs/2; %Nyquist frequency
FTs = fft(s)/L; %Fast fourier transform (s- data)
Fv = linspace(0,1, fix(L/2)+1)*Fn; %Frequency vector
Iv = 1:numel(Fv); %Index vector
subplot(2, 1, 1); %plotting top pane
plot(t,s); %Acceleration vs time
set(gca,'xlim',[1 50]); %Scale to fit
grid; %Grids on
title ('Acceleration vs time');
xlabel('time(s)');
ylabel('Acceleration');
subplot(2, 1, 2); %Plotting bottom pane
plot(Fv, abs(FTs(Iv))*2,'red'); %FFT - Amplitude vs Frequency
grid
title ('Fast fourier transform');
xlabel('Frequency (Hz)');
ylabel ('Amplitude (m)');

0 comentarios
Respuesta aceptada
Image Analyst
el 9 de En. de 2021
In the spatial domain, before fft, you can subtract the mean
Iv = Iv - mean(Iv);
In the frequency domain, you can zero out the DC component by setting it to zero
ft = fft(Iv);
ft(1) = 0;
12 comentarios
Image Analyst
el 29 de Jul. de 2023
@AMOS, at the point where you run this line of code:
ft = fft(Iv);
Ajith Kumar
el 6 de En. de 2025
Iv_new = (Iv / mean(Iv)) - 1
This removes the DC component by normalizing the signal with its mean and then centering it around zero.
Is this another possible solution?
Más respuestas (1)
Sateesh Kandukuri
el 20 de Dic. de 2022

Is it possible to modify this behaviour from asymmetrical to symmetrical? And then performing FFT may resolve my issue.
11 comentarios
Image Analyst
el 23 de Dic. de 2022
I had the window width be several wavelents long. How many indexes are between each of your peaks? Try having the window width be like 3 or 4 times that long.
Sateesh Kandukuri
el 26 de Dic. de 2022
Using your suggestion, I used movmean() in the calculation of fft as
A = readmatrix('table.txt');
ts=1e-12;
My = A(:,3);
[peakValues, indexesOfPeaks] = findpeaks(My);
windowWidth = 2 * mean(diff(indexesOfPeaks));
MySmooth = movmean(My, windowWidth);
My = My - MySmooth;
N = 2^(nextpow2(length(My)));
freq = fft(My,N);
freq2 = abs(fftshift(freq));
freq3 = freq2/max(freq2);
I got the following result for My component

Is this the right way to use movmean() function?
I've tried to understand the working of movmean() function using some arrays, but I still need clarification. Can you briefly explain with an example?
Ver también
Categorías
Más información sobre Parametric Spectral Estimation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





