How to solve a systems of ODE and Algebraic Equations

28 visualizaciones (últimos 30 días)
Telema Harry
Telema Harry el 28 de En. de 2021
Comentada: Nikhil Kapoor el 16 de Abr. de 2022
I have a system of 3 nonlinear ODE and 2 nonlinear algebraic equations.
Please how can I solve these systems of equation.
ODE 45 can easily solve the ODE part. However, I don't know how to combine the solution from ODE45 and the algebraic equations.
Thank you.
  2 comentarios
James Tursa
James Tursa el 28 de En. de 2021
Please show us the equations you are working with.
jessupj
jessupj el 28 de En. de 2021
Editada: jessupj el 28 de En. de 2021
it sounds like what you're after is "how to solve a DAE" if the algebraic eqations constrain the solutions of the ODE part https://www.mathworks.com/help/matlab/math/solve-differential-algebraic-equations-daes.html
otherwise, if the algebraic equations aren't constraints (ie. they determine diagnostic variables), you probably want to solve the ODE and then solve the algebraic equations 'offline' using e.g. fsolve

Iniciar sesión para comentar.

Respuesta aceptada

jessupj
jessupj el 28 de En. de 2021
Editada: jessupj el 28 de En. de 2021
looks like you've got a non-autonomous DAE.
with u=x(4) and y = x(5), you'd have:
dx(1) = -wh.*x(1) + wh.* x(5)
dx(2) = -wl.*x(2) + A.*sin(w.*t).* wl.*(x(5) - x(1))
dx(3) = K.*x(2)
0 = x(3) + A.* sin(w.*t) - x(4)
0 = 25 - (5 - x(4) ).^2 - x(5) % = 25 - (25 -10*x4 + x4^2) -x5 = x4*(10 -x4)-x5
and check this old post:
https://www.mathworks.com/matlabcentral/answers/360710-how-to-solve-a-set-of-odes-and-a-nonlinear-equation
  1 comentario
Telema Harry
Telema Harry el 29 de En. de 2021
Thank you for your help @jessupj and @James Tursa.
I have been able to run the scripts but there is something I am not doing correctly.
I want to be able to plot my x(1) , x(2), x(3), x(4),, x(5) againt time. But I have not been able to figure out how to do that.
% x(1) = eta (n)
% x(2) = psi (E) - that is the second differential equation
% x(3) = Uhat
% x(4) = u
% x(5) = J
tspan = 0:4;
iCon = [0; 0; 0 ; 0; 0];
M = [1 0 0 0 0; 0 1 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0];
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',[1e-6 1e-10 1e-6 1e-6 1e-6]);
[t,y] = ode15s(@ESCdae,tspan,iCon)
plot (t,y)
function out = ESCdae(t,x)
f = 10;
A = 0.2;
w = 2*pi*f;
wh = 0.8;
wl = 0.2;
K = 5;
out = [-wh.*x(1) + wh.* x(5)
-wl.*x(2) + A.*sin(w.*t).* wl.*(x(5) - x(1))
K.*x(2)
x(3) + A.* sin(w.* t) - x(4)
x(4).*(10 - x(4)) - x(5)
]
end

Iniciar sesión para comentar.

Más respuestas (1)

Telema Harry
Telema Harry el 28 de En. de 2021
Editada: Telema Harry el 28 de En. de 2021
Thank you James for the feedback. See the sample equations.
f = 10;
A = 0.2;
w = 2*pi*f;
wh = 0.8;
wl = 0.2;
y = 25 - (5 - u).^2
dx1dt = -wh.*x(1) + wh.* y
dx2dt = -wl.*x(2) + A.*sin(w.*t).* wl.*(y - x(1))
dx3dt = K.*x(2) % the solution to this equation gives x(3)
u = x(3) + A.* sin(w.*t)
  2 comentarios
Alex Sha
Alex Sha el 29 de En. de 2021
Hi, since: u = x(3) + A.* sin(w.*t) and y = 25 - (5 - u).^2, so y = 25 - (5 - ( x(3) + A.* sin(w.*t))).^2, substitute y into dx1dt and dx2dt, then pure ODE functions will be formed.
Nikhil Kapoor
Nikhil Kapoor el 16 de Abr. de 2022
How to do this?

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by