
How to define a function consisting of multiple parts (i.e different f:n at different times) in Matlab using a single equation?
18 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Harshit Jain
el 22 de Abr. de 2013
Comentada: Samuel Silas Ng'habi
el 27 de Abr. de 2023
Example
f(x)
= x^2 for 0<x<1;
= x^3 for 1<x<2;
= ......and so on.
Please help me with this.
0 comentarios
Respuesta aceptada
Sally Al Khamees
el 23 de Dic. de 2016
Editada: Sally Al Khamees
el 21 de Feb. de 2017
If you have R2016b and the Symbolic Math Toolbox installed, you can just use the piecewise function:
Here is an example:
syms y(x);
y(x) = piecewise(1<x <2, x^3, 2 <= x <= 3, x^2, 1)
fplot(y)
%You can evaluate it at one point. Example when x = 2
y(2)
%You can evaluate a vector. Example
v = linspace(1,4,4)
y(v)

1 comentario
Samuel Silas Ng'habi
el 27 de Abr. de 2023
What if the value and the conditions are expressed as nth -term. How will you plot the function See pictures attached
Más respuestas (2)
Walter Roberson
el 22 de Abr. de 2013
You can define it symbolically using MuPAD's "piecewise" construct.
In some cases you can define it numerically using logical constructs such as
(x > 1 & x < 2) .* x.^3 + (x > 0 & x < 1) .* x^2
This will not work properly for locations that generate NaN or infinity when evaluated for any part. For example, if f(x) = 1 for x = 0, and f(x) = 1/x for other x, then you cannot use
(x == 0) .* 1 + (x ~= 0) .* 1./x
because the second part will generate NaN when evaluated for x(K) = 0, and the NaN multiplied by the 0 of (x(K) ~= 0) will still be NaN instead of vanishing to 0 as it does for finite values. Similarily, 0 * inf is NaN rather than 0.
John BG
el 23 de Dic. de 2016
y=[1:0.001:2].^3
4 comentarios
Stephen23
el 22 de Feb. de 2017
@John BG: how could this be used in a function of x (as the question requests), e.g.:
fun = @(x) ???
Note that both Sally Al Khamees' and Walter Roberson's answers provide this.
Walter Roberson
el 22 de Feb. de 2017
Consider, for example, if the task is to find the point at which the function equals 3.5,
x0 = 2 * rand(); %range is 0 to 2
fzero(@(x) f(x) - 3.5, x0)
Using a fixed dx is not going to be able to handle this task -- not unless dx = eps(realmin), so that you are testing all 2^62 representable numbers between 0 and 2.
You could, of course, write code that assumes that the input is a scalar:
function y = f(x)
y = 0;
if x > 0 & x < 1
y = x.^2;
elseif x > 1 & x < 2
y = x.^3;
end
end
and you could loop that code for non-scalar x.
You can use logical indexing:
function y = f(x);
y = zeros(size(x));
mask = x > 0 & x < 1;
y(mask) = x(mask).^2;
mask = x > 1 & x < 2;
y(mask) = x(mask).^3;
end
You can define it with an anonymous function,
f = @(x) (x > 1 & x < 2) .* x.^3 + (x > 0 & x < 1) .* x^2;
You can look at the pattern and predict
f = @(x) (x ~= ceil(x)) .* x.^(1 + ceil(x));
And all of those versions are functions that could be used as functions over arbitrary domains such as for fzero() purposes.
But using a fixed dx is not an approach that can be used for this kind of common application.
Ver también
Categorías
Más información sobre Assumptions en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!