Problem using scalingLayer for shifting actor outputs to desired range
    3 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Mostafa Nazmi
 el 30 de En. de 2021
  
    
    
    
    
    Comentada: Mostafa Nazmi
 el 16 de Feb. de 2021
            Greetings everyone. I want to use scalingLayer to shift my actor network's outputs to desired range. I'm using this reference and the code below :
numObs = 10;
numAct = 5;
actorLayerSizes = [400 300];
sc = reshape([10, 10, 20, 15, 15], [1 1 5]);
bias = reshape([0, 0, 0, 0, 0], [1 1 5]);
actorNetwork = [
    imageInputLayer([numObs 1 1],'Normalization','none','Name','observation')
    fullyConnectedLayer(actorLayerSizes(1), 'Name', 'ActorFC1')
    reluLayer('Name', 'ActorRelu1')
    fullyConnectedLayer(actorLayerSizes(2), 'Name', 'ActorFC2')
    reluLayer('Name', 'ActorRelu2')
    fullyConnectedLayer(numAct, 'Name', 'ActorFC3')                       
    tanhLayer('Name','ActorTanh1'), ...
    scalingLayer('Scale',sc, 'Bias',bias)
    ];
I'm getting the error below:
Error using vertcat
Dimensions of arrays being concatenated are not consistent.
Can anyone help me with this? 
Thanks
3 comentarios
Respuesta aceptada
  Emmanouil Tzorakoleftherakis
    
 el 13 de Feb. de 2021
        If you remove ',...' from the 'tanh' row the error goes away. The way you have it now, you are adding the scaling layer in the same row as tanh whereas it should be in its own row.
actorNetwork = [
    imageInputLayer([numObs 1 1],'Normalization','none','Name','observation')
    fullyConnectedLayer(actorLayerSizes(1), 'Name', 'ActorFC1')
    reluLayer('Name', 'ActorRelu1')
    fullyConnectedLayer(actorLayerSizes(2), 'Name', 'ActorFC2')
    reluLayer('Name', 'ActorRelu2')
    fullyConnectedLayer(numAct, 'Name', 'ActorFC3')                       
    tanhLayer('Name','ActorTanh1')
    scalingLayer('Scale',sc, 'Bias',bias)
    ];
3 comentarios
  Emmanouil Tzorakoleftherakis
    
 el 15 de Feb. de 2021
				Np. Please accept the answer if it answered your question
Más respuestas (0)
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

