Principle Component Analysis Computation
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi all I am applying Principle Component Analysis manauall. I have a Dataset let say
Data= [2.5000 2.4000
0.5000 0.7000
2.2000 2.9000
1.9000 2.2000
3.1000 3.0000
2.3000 2.7000
2.0000 1.6000
1.0000 1.1000
1.5000 1.6000
1.1000 0.9000]
when I compute directly by calling the matlab function princomp I get the PC
0.6779 0.7352
0.7352 -0.6779
But when I do manually like that
function [V newX D] = Untitled(X) X = bsxfun(@minus, X, mean(X,1)); %# zero-center C = (X'*X)./(size(X,1)-1); %'# cov(X)
[V D] = eig(C);
[D order] = sort(diag(D), 'descend'); %# sort cols high to low
V = V(:,order);
newX = X*V(:,1:end);
end
0.6779 -0.7352
0.7352 0.6779
I am getting different result just the minis difference why is it/
Thanks in Advance.
0 comentarios
Respuesta aceptada
Leah
el 23 de Abr. de 2013
they are the same because the eigenvector (-.7532 0.6779) is equivalent to (.7532 -0.6779)
3 comentarios
Matt Kindig
el 23 de Abr. de 2013
They are equal because, by definition, all elements of an eigenvector can be scaled by an arbitrary constant without changing the eigenvector. This is a property of eigenvectors. If (-0.7532, 0.6779) is scaled by -1, it gives (0.7532, -0.6779).
Más respuestas (0)
Ver también
Categorías
Más información sobre Operating on Diagonal Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!