Principle Component Analysis Computation

3 visualizaciones (últimos 30 días)
Algorithms Analyst
Algorithms Analyst el 23 de Abr. de 2013
Hi all I am applying Principle Component Analysis manauall. I have a Dataset let say
Data= [2.5000 2.4000
0.5000 0.7000
2.2000 2.9000
1.9000 2.2000
3.1000 3.0000
2.3000 2.7000
2.0000 1.6000
1.0000 1.1000
1.5000 1.6000
1.1000 0.9000]
when I compute directly by calling the matlab function princomp I get the PC
0.6779 0.7352
0.7352 -0.6779
But when I do manually like that
function [V newX D] = Untitled(X) X = bsxfun(@minus, X, mean(X,1)); %# zero-center C = (X'*X)./(size(X,1)-1); %'# cov(X)
[V D] = eig(C);
[D order] = sort(diag(D), 'descend'); %# sort cols high to low
V = V(:,order);
newX = X*V(:,1:end);
end
0.6779 -0.7352
0.7352 0.6779
I am getting different result just the minis difference why is it/
Thanks in Advance.

Respuesta aceptada

Leah
Leah el 23 de Abr. de 2013
they are the same because the eigenvector (-.7532 0.6779) is equivalent to (.7532 -0.6779)
  3 comentarios
Matt Kindig
Matt Kindig el 23 de Abr. de 2013
They are equal because, by definition, all elements of an eigenvector can be scaled by an arbitrary constant without changing the eigenvector. This is a property of eigenvectors. If (-0.7532, 0.6779) is scaled by -1, it gives (0.7532, -0.6779).
Algorithms Analyst
Algorithms Analyst el 28 de Abr. de 2013
If I use the princomp function in matlab using 2D image (grayscale image)
[A B C D]=princomp(img);
so can I say that this is called 2 dimensional principle component analysis?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Operating on Diagonal Matrices en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by