How to solve 4 transcendental equations of 4 unknown values?

32 visualizaciones (últimos 30 días)
LAKKIMSETTI SUNANDA
LAKKIMSETTI SUNANDA el 2 de Feb. de 2021
Comentada: Walter Roberson el 7 de Mzo. de 2021
Hi. I have a problem in solving the equations. I have four equations and four unknowns and I have to find those 4 unknown variables. The equations are as follows:
syms Y2 Y3 l2 l3;
2*Y1*tan(t1_1)+Y2*tan(t2_1)+Y3*tan(t3_1)==0;
2*Y1*tan(t1_3)+Y2*tan(t2_3)+Y3*tan(t3_3)==0;
b1== (t1_1*Y1)+(t2_1*(Y2/2)*((sec(t2_1)^2)/(sec(t1_1)^2)))+(t3_1*(Y3/2)*((sec(t3_1)^2)/(sec(t1_1)^2)));
b3== (t1_3*Y1)+(t2_3*(Y2/2)*((sec(t2_3)^2)/(sec(t1_3)^2)))+(t3_3*(Y3/2)*((sec(t3_3)^2)/(sec(t1_3)^2)));
Here Y1, b1, b3, l1, lambda are known values and the unknown variables are Y2, Y3, l2, l3. The above t1 ,t2 ,t3 are in terms of l2 and l3.
Y1=0.02;
l1 = 0.0105;
lambda =[0.0426 0.0400 0.0405 0.0420];
b1=0.1079;
b3=0.03189;
t2_1=(2*pi/lambda(1))*l2;
t3_1=(2*pi/lambda(1))*l3;
t2_3=(2*pi/lambda(3))*l2;
t3_3=(2*pi/lambda(3))*l3;
t1_1=(2*pi/lambda(1))*l1;
t1_3=(2*pi/lambda(3))*l1;
I tried using vpasolve and also defining them as functions for plotting contour graphs. But I'm not able to find a solution of all positive values. Please help me with this. Thank you.

Respuestas (2)

darova
darova el 2 de Feb. de 2021
Use syms and solve
syms Y2 Y3 l2 l3
eq1 = 2*Y1*tan(t1_1)+Y2*tan(t2_1)+Y3*tan(t3_1);
eq2 = 2*Y1*tan(t1_3)+Y2*tan(t2_3)+Y3*tan(t3_3);
eq3 = b1 - (t1_1*Y1)+(t2_1*(Y2/2)*((sec(t2_1)^2)/(sec(t1_1)^2)))+(t3_1*(Y3/2)*((sec(t3_1)^2)/(sec(t1_1)^2)));
eq4 = b3 - (t1_3*Y1)+(t2_3*(Y2/2)*((sec(t2_3)^2)/(sec(t1_3)^2)))+(t3_3*(Y3/2)*((sec(t3_3)^2)/(sec(t1_3)^2)));
solve([eq1 eq2 eq3 eq4])
  9 comentarios
darova
darova el 3 de Feb. de 2021
@Walter Roberson he has 4 uknowns
@LAKKIMSETTI SUNANDA I suggest you to express Y1 and use isosurface
Walter Roberson
Walter Roberson el 3 de Feb. de 2021
I showed how to reduce the four equations into two equations. Once you have solutions to the two equations you can back-substitute to find the other two values.

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 3 de Feb. de 2021
format long g
Q = @(v) sym(v);
syms Y2 Y3 l2 l3
Y1 = Q(0.02);
l1 = Q(0.0250);
lambda =[Q(0.1035), Q(0.0999), Q(0.0966)];
b1 = Q('11698461397958468980052614032629')/Q(10)^32;
b3 = Q('12515236662420125800636060478832')/Q(10)^32;
t2_1=(2*pi/lambda(1))*l2;
t3_1=(2*pi/lambda(1))*l3;
t2_3=(2*pi/lambda(3))*l2;
t3_3=(2*pi/lambda(3))*l3;
t1_1=(2*pi/lambda(1))*l1;
t1_3=(2*pi/lambda(3))*l1;
eq1 = 2*Y1*tan(t1_1)+Y2*tan(t2_1)+Y3*tan(t3_1);
eq2 = 2*Y1*tan(t1_3)+Y2*tan(t2_3)+Y3*tan(t3_3);
eq3 = b1 - (t1_1*Y1)+(t2_1*(Y2/2)*((sec(t2_1)^2)/(sec(t1_1)^2)))+(t3_1*(Y3/2)*((sec(t3_1)^2)/(sec(t1_1)^2)));
eq4 = b3 - (t1_3*Y1)+(t2_3*(Y2/2)*((sec(t2_3)^2)/(sec(t1_3)^2)))+(t3_3*(Y3/2)*((sec(t3_3)^2)/(sec(t1_3)^2)));
eqn = [eq1; eq2; eq3; eq4];
char(eqn)
ans = '[tan((100*pi)/207)/25 + Y2*tan((4000*l2*pi)/207) + Y3*tan((4000*l3*pi)/207); Y2*tan((10000*l2*pi)/483) - tan((233*pi)/483)/25 + Y3*tan((10000*l3*pi)/483); (2000*Y2*l2*pi*cos((100*pi)/207)^2)/(207*cos((4000*l2*pi)/207)^2) - (2*pi)/207 + (2000*Y3*l3*pi*cos((100*pi)/207)^2)/(207*cos((4000*l3*pi)/207)^2) + 11698461397958468980052614032629/100000000000000000000000000000000; (5000*Y2*l2*pi*cos((233*pi)/483)^2)/(483*cos((10000*l2*pi)/483)^2) - (5*pi)/483 + (5000*Y3*l3*pi*cos((233*pi)/483)^2)/(483*cos((10000*l3*pi)/483)^2) + 782202291401257862539753779927/6250000000000000000000000000000]'
sol1 = solve(eqn(1:2), [Y2,Y3]);
sol1.Y2
ans = 
sol1.Y3
ans = 
eqn2 = subs(eqn(3:4), {Y2,Y3}, {sol1.Y2, sol1.Y3})
eqn2 = 
N = 10;
sols = zeros(N,4);
for K = 1 : N
initial = randn(2,1); %COLUMN
sol2 = vpasolve(eqn2, [l2, l3], initial);
backY2 = subs(sol1.Y2, sol2);
backY3 = subs(sol1.Y3, sol2);
sols(K,:) = vpa([backY2, backY3, sol2.l2, sol2.l3]);
end
sols
sols = 10×4
0.126485933403849 -0.167119007948023 -0.220120421257385 0.383807863154484 0.432341841059124 -0.233227313778012 1.13396636173026 0.796286515669898 -2.21198116937819 2.13838491109613 1.69346671322037 1.0702137362349 0.626751243150408 0.493888638447776 -1.66870698078474 1.9101114699078 -0.676916970037412 -0.429495987828577 0.773842328718426 0.22518335023655 0.17078702060627 -0.898235237721649 0.499807867212554 1.24946279610679 -0.872625762873269 -0.405122824760962 0.37514697209635 0.823405507279456 -0.944817212856229 -0.143244176682331 0.474651563810915 1.05004207412011 0.77749208639984 1.12244937333127 1.64897703075677 -2.02387843393713 0.43109071095526 -0.441555710731303 2.07339632941486 0.949422892891187
  9 comentarios
LAKKIMSETTI SUNANDA
LAKKIMSETTI SUNANDA el 7 de Mzo. de 2021
@Alex Sha Now this is giving us the positive solutions. So I don't think the equations are wrong as I checked those and derived them by hand.
@Walter Roberson We are now getting solutions for a different input. So it should definitely have positive solutions for the above given input too. Those roots will be very close to 0. So if we are able to consider a range of 0 to 0.2, I think we can find them. I'm still working on that and your help will be highly appreciated.
Walter Roberson
Walter Roberson el 7 de Mzo. de 2021
For the first set of inputs, look at pretty(sol1.Y2)
/ 233 pi \ / 4000 pi l3 \ / 100 pi \ / 10000 pi l3 \
tan| ------ | tan| ---------- | + tan| ------ | tan| ----------- |
\ 483 / \ 207 / \ 207 / \ 483 /
- ----------------------------------------------------------------------------------
/ / 4000 pi l2 \ / 10000 pi l3 \ / 4000 pi l3 \ / 10000 pi l2 \ \
| tan| ---------- | tan| ----------- | - tan| ---------- | tan| ----------- | | 25
\ \ 207 / \ 483 / \ 207 / \ 483 / /
and compare to pretty(sol1.Y3)
/ 233 pi \ / 4000 pi l2 \ / 100 pi \ / 10000 pi l2 \
tan| ------ | tan| ---------- | + tan| ------ | tan| ----------- |
\ 483 / \ 207 / \ 207 / \ 483 /
----------------------------------------------------------------------------------
/ / 4000 pi l2 \ / 10000 pi l3 \ / 4000 pi l3 \ / 10000 pi l2 \ \
| tan| ---------- | tan| ----------- | - tan| ---------- | tan| ----------- | | 25
\ \ 207 / \ 483 / \ 207 / \ 483 / /
The denominators are the same and the numerators have the same form except that one involves l2 and the other involves l3, and there is a negative sign involved.
In order for both of them to be positive, both numerators must have the same sign, and that sign has to be the same as the denominator. Which implies that the sign of the terms with l3 must be negative of the sign of the terms with l2 for the same structure.
This is not impossible, but it is going to take some work to find.

Iniciar sesión para comentar.

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by