How can I design Adaptive Filter by using LMS algorithm??

9 visualizaciones (últimos 30 días)
A K
A K el 27 de Abr. de 2013
Respondida: sandeep URITI el 16 de Feb. de 2014
Leaset MEan Square algorithm

Respuestas (2)

Wayne King
Wayne King el 27 de Abr. de 2013

sandeep URITI
sandeep URITI el 16 de Feb. de 2014
clc clear all; close all;
Fc=4000000; %Carrier Frequency =1Mhz f=Fc; Fs=16000000; %sampling frequency fm=700000; Fd=fm; sensors=4; % number of Sensors angle_tx=pi/4; %Transmitter angle = 45 degrees angle_jam=pi/4; %jammer angle = 45 degree sens_wts=[0.2 0.4 0.6 0.8]; %Assigning Sensor weights c=3e08; lembda=c/f; % Transmitted signal wavelength
samps=2*(6*Fs/fm); % Number of samples of Data max=(1/Fs)*(samps-1); t=0:1/Fs:(max);
%Modulating Data modsignal = sin(2*pi*fm*t); % Baseband Signal modsignal(modsignal>0)=1; modsignal(modsignal<0)=-1; CAR=sin(2*pi*Fc*t); %carrier t_sig=modsignal.*CAR; % modulated Data ch_samps=length(t_sig); %Modulated Signal Data Samples g=0:ch_samps-1; % figure(2); % plot(g,t_sig); %plot Transmitted signal % title('Transmitted Modulated signal'); grid on; % axis([0 8e6 0 1]);
d=lembda/2; %Sensor separation meu=15e-6; %Step size
%FFT of Transmitted signal k=ch_samps; fft_samps = 2^nextpow2(k); t_fft = fft(t_sig,fft_samps)/k; fprime = Fs/2*linspace(0,1,fft_samps/2); figure(3); subplot(3,1,1) %plot frequency components of Transmitted Signal plot(fprime,2*abs(t_fft(1:fft_samps/2))); grid on; title('Original Transmitted signal frequency spectrum'); xlabel('frequency Hz'); ylabel('magnitude'); axis([0 8e6 0 1]) %Jammer Signal t=0:1/Fs:max; j_sig=1*sin(2*pi*Fc*t);
%FFT of Jamming Signal fft_samps = 2^nextpow2(k); j_fft = fft(j_sig,fft_samps)/k; fprime = Fs/2*linspace(0,1,fft_samps/2); % figure(4); % plot(fprime,2*abs(j_fft(1:fft_samps/2))); %plot frequency components of Jamming Signal % grid on; % title('Spectrum of Jamming signal'); % xlabel('Frequency (Hz)'); % ylabel('magnitude'); % axis([0 8e6 0 1])
%Array Propogation Vectors for t2=1:sensors; v(t2)=exp(i*(t2-1)*2*pi*d*sin(angle_tx)*1/lembda);%propagation vector
end
for t3=1:sensors; eeta(t3)=exp(i*(t3-1)*2*pi*d*sin(angle_jam)*1/lembda);%Propagation Vector for Jamming Signal end
%Jammer Reception at the Sensor Array j_rcvd=j_sig'*eeta; %Jamming signal Reception @ Sensors
% j_sig+t_sig = data after reception @ anteena x=t_sig'*v+j_rcvd;
%FFT of Recieved Signal @ Sensors fft_samps = 2^nextpow2(k); x_fft = fft(x,fft_samps)/k; fprime = Fs/2*linspace(0,1,fft_samps/2); figure(3); subplot(3,1,2 ) plot(fprime,2*abs(x_fft(1:fft_samps/2))); % Plot frequency components of Rxd signal Grid on; title('Signal After reception at Antenna (Jamming Signal + Desired Signal)'); xlabel('Frequency (Hz)'); ylabel('Magnitude'); axis([0 8e6 0 1])
%LMS Algorithm for n1=1:ch_samps x_est=sens_wts*x'; E=t_sig-x_est; sens_wts=sens_wts+(meu*E*x); end
%FFT of Estimated fft_samps = 2^nextpow2(k); z_fft = fft(x_est,fft_samps)/k; fprime = Fs/2*linspace(0,1,fft_samps/2); figure(3); subplot(3,1,3); plot(fprime,2*abs(z_fft(1:fft_samps/2))); % Plot frequency components of Estimated signal Grid on; title('Estimated signal frequency spectrum'); xlabel('Frequency (Hz)'); ylabel('Magnitude'); axis([0 8e6 0 1]) %************************** %Scatter plot of estimated signal
% y_est = ddemodce(x_est,Fd,Fs*2,'psk',2); % % y_est= circshift(y_ester,3) % figure(1); % subplot(2,1,2); % stem(y_est,'filled'),grid on; % axis([2 101 0 1]);

Categorías

Más información sobre Adaptive Filters en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by