nonlinear and linear regression
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mhmmd Sjj
el 15 de Feb. de 2021
Respondida: William Rose
el 30 de Mzo. de 2021
I have created a script plus a function to use for nonlinear least square optimization. I have compared it with linear regression and also with built-in functions in MATLAB such as fminsearch,fminunc, lsqnonlin. The results for all regression models are surprisingly the same and I don't know why. Can anyone help me with that please?Here is my function:
function result = NonLsq(w,x,y)
ei = -(w(1).*x+w(2))+y;
result = sum(ei.^2);
end
And the following is my main script:
clc; clear; close all;
% { Linear And Nonlinear Curvefitting}
%% 1. One Dimensional data
x = [0.5 1 2 3 4];
y = [10.4 5.8 3.3 2.4 2];
xMin = min(x);
xMax = max(x);
n = 100; % Number of data which sould be interpolated
xInterp = linspace(xMin,xMax,n);
yInterp1 = interp1(x,y,xInterp);
yInterp2 = interp1(x,y,xInterp,'spline');
%% 2. NonLinear Least Square
% Initial Guess
g = @(w,x,y) (w(1).*x+w(2))-y;
X01 = [0.15 0.55];
X02 = [0.4 0.8];
X03 = [0.7 48];
% X0 = [0.15 0.55]';
Options1 = optimset('Display','Iter','TolX',1e-5);
Options2 = optimset('Display','on');
Options3 = optimset('MaxIter',50,'TolFun',1e-4);
p1_Nonlin = fminsearch(@NonLsq,X01,Options1,x,y);
p2_Nonlin = fminunc(@NonLsq,X02,Options2,x,y);
p3_Nonlin = lsqnonlin(g,X03,[],[],Options3,x,y);
plot(x,y,'o','MarkerSize',8,'LineWidth',3,'MarkerFaceColor','k');
hold on
grid on
plot(xInterp,yInterp1,'r--','LineWidth',2)
hold on
plot(xInterp,yInterp2,'b:','LineWidth',2)
legend('Spline INterpolated')
hold on
plot(xInterp,pLinear_Interp,'k*','LineWidth',2)
plot(xInterp,P1_Nonlin_Interp,'c.','LineWidth',2,'MarkerSize',12)
hold on
plot(xInterp,P2_Nonlin_Interp,'m','LineWidth',2)
hold on
plot(xInterp,P3_Nonlin_Interp,'g','LiNEwidth',2)
legend('Original Data','Linear Interpolatn','Linear Spline','Linear Regression'...
,'FminSearch','FminUnc','LsqNonLinear')
Could it be related to the function I'm trying to optimize?
0 comentarios
Respuesta aceptada
William Rose
el 30 de Mzo. de 2021
You get the same results because your model g() is linear in w(1) and w(2):
g = @(w,x,y) (w(1).*x+w(2))-y;
The error function NonLsq() for the noninear case uses the same linear model. Thus linear and nonlinear fits find the same solution.
By the way, you do not need the dot-multiply in ei=-(w(1).*x+w(2))+y. Since w(1) is a scalar, you can do ei=-(w(1)*x+w(2))+y. The same is true for the deifnition of g().
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!