K-means Clustering Result Always Changes
34 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Alvi Syahrin
el 4 de Mayo de 2013
Comentada: Walter Roberson
el 26 de Nov. de 2021
I'm working on k-means in MATLAB. Here are my codes:
load cobat.txt
k=input('Enter the number of cluster: ');
if k<8
[cidx ctrs]=kmeans(cobat, k, 'dist', 'sqEuclidean');
Z = [cobat cidx]
else
h=msgbox('Must be less than eight');
end
"cobat" is the file of mine and here it looks:
65 80 55
45 75 78
36 67 66
65 78 88
79 80 72
77 85 65
76 77 79
65 67 88
85 76 88
56 76 65
My problem is everytime I run the code, it always shows different result, different cluster. How can I keep the clustering result always the same?
0 comentarios
Respuesta aceptada
Walter Roberson
el 5 de Mayo de 2013
%generate some initial cluster centers according to some deterministic algorithm
%in this case, I construct a space-diagonal equally spaced, but choose your
%own algorithm
minc = min(cobat, 1);
maxc = max(cobat, 1);
nsamp = size(cobat,1);
initialcenters = repmat(minc, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxc - minc) ./ (nsamp-1));
%Once you have constructed the initial centers, cluster using those centers
[cidx ctrs] = kmeans(cobat, k, 'dist', 'sqEuclidean', 'start', initialcenters);
6 comentarios
esmat abdallah
el 26 de Nov. de 2021
initialcenters = repmat(minc, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxc - minc) ./ (nsamp-1));
please, matlab out an error on this line : "Error using +
Matrix dimensions must agree."
what can i do ??
Walter Roberson
el 26 de Nov. de 2021
%generate some initial cluster centers according to some deterministic algorithm
%in this case, I construct a space-diagonal equally spaced, but choose your
%own algorithm
minc = min(cobat, [], 1);
maxc = max(cobat, [], 1);
nsamp = size(cobat,1);
initialcenters = repmat(minc, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxc - minc) ./ (nsamp-1));
%Once you have constructed the initial centers, cluster using those centers
[cidx ctrs] = kmeans(cobat, k, 'dist', 'sqEuclidean', 'start', initialcenters);
Más respuestas (2)
the cyclist
el 4 de Mayo de 2013
K-means clustering uses randomness as part of the algorithm Try setting the seed of the random number generator before you start. If you have a relatively new version of MATLAB, you can do this with the rng() command. Put
rng(1)
at the beginning of your code.
2 comentarios
the cyclist
el 4 de Mayo de 2013
Type
>> doc randstream
to see how to do it in your version.
Pallavi Saha
el 14 de Sept. de 2017
I am facing the same issue inconsistency in the output of fcm. Can anyone help me
3 comentarios
Mehmet Volkan Ozdogan
el 28 de Mzo. de 2019
Hi,
I have a question about rng(). If we use rng() command, K-means algortihm stil repeats until the results are getting convergenced to the best. Is that right?
Thank you
Walter Roberson
el 29 de Mzo. de 2019
Yes.
rng(SomeParticularNumericSeed)
just ensures that it will always use the same random number sequence provided that no other random numbers are asked for between the rng() call and the kmeans call.
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!