Theory of Bicubic interpolation

37 visualizaciones (últimos 30 días)
Shubha B.
Shubha B. el 23 de Feb. de 2021
Comentada: Shubha B. el 25 de Feb. de 2021
For the bicubic code which is given in the this link https://www.mathworks.com/matlabcentral/answers/405846-bicubic-interpolation-direct-interpolation-formula-matlab-source-code, where can I get the expalnation of this code. The explanation which is given in the link https://en.wikipedia.org/wiki/Bicubic_interpolation
is not matching.

Respuestas (1)

Bruno Luong
Bruno Luong el 24 de Feb. de 2021
Editada: Bruno Luong el 24 de Feb. de 2021
It has been answered here
In 2D you do in one direction followedred by another.
%%
x = [-1:2];
y = [-1:2];
[X,Y] = meshgrid(x,y);
xq = rand;
yq = rand;
Z = rand(size(X));
Zq = interp2(x,y,Z,xq,yq,'bicubic')
% Check bicubic formula
Pl = [1.5,-2.5,0,1];
Pr = [-0.5,2.5,-4,2];
cubicp = @(x) (x<=1).*polyval(Pl,x) + (x>1 & x<2).*polyval(Pr,x);
cubic = @(x) cubicp(abs(x));
Zq = 0;
[~,i0] = histc(xq,x);
[~,j0] = histc(yq,y);
for i = i0-1:i0+2
for j = j0-1:j0+2
k = sub2ind(size(Z),j,i);
Zq = Zq + cubic(X(k)-xq)*cubic(Y(k)-yq)*Z(k);
end
end
Zq
  3 comentarios
Bruno Luong
Bruno Luong el 25 de Feb. de 2021
Editada: Bruno Luong el 25 de Feb. de 2021
The theory is in the Key's paper on the reference of the document of interp1 and interp2 and in the link II provide (coeffcient in eqt 4 do you read it?).
Apparently it's free access here
Mostly coefficients are computed to provide a smooth convolution kernel and compact support.
The example I give is formula for interpolation at a singe point (xq,yq).
For more points just loop on it. No relevant if you want to understand the formula.
Shubha B.
Shubha B. el 25 de Feb. de 2021
thank you sir.

Iniciar sesión para comentar.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by