Theory of Bicubic interpolation
37 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
For the bicubic code which is given in the this link https://www.mathworks.com/matlabcentral/answers/405846-bicubic-interpolation-direct-interpolation-formula-matlab-source-code, where can I get the expalnation of this code. The explanation which is given in the link https://en.wikipedia.org/wiki/Bicubic_interpolation
is not matching.
Respuestas (1)
Bruno Luong
el 24 de Feb. de 2021
Editada: Bruno Luong
el 24 de Feb. de 2021
It has been answered here
In 2D you do in one direction followedred by another.
%%
x = [-1:2];
y = [-1:2];
[X,Y] = meshgrid(x,y);
xq = rand;
yq = rand;
Z = rand(size(X));
Zq = interp2(x,y,Z,xq,yq,'bicubic')
% Check bicubic formula
Pl = [1.5,-2.5,0,1];
Pr = [-0.5,2.5,-4,2];
cubicp = @(x) (x<=1).*polyval(Pl,x) + (x>1 & x<2).*polyval(Pr,x);
cubic = @(x) cubicp(abs(x));
Zq = 0;
[~,i0] = histc(xq,x);
[~,j0] = histc(yq,y);
for i = i0-1:i0+2
for j = j0-1:j0+2
k = sub2ind(size(Z),j,i);
Zq = Zq + cubic(X(k)-xq)*cubic(Y(k)-yq)*Z(k);
end
end
Zq
3 comentarios
Bruno Luong
el 25 de Feb. de 2021
Editada: Bruno Luong
el 25 de Feb. de 2021
The theory is in the Key's paper on the reference of the document of interp1 and interp2 and in the link II provide (coeffcient in eqt 4 do you read it?).
Apparently it's free access here
Mostly coefficients are computed to provide a smooth convolution kernel and compact support.
The example I give is formula for interpolation at a singe point (xq,yq).
For more points just loop on it. No relevant if you want to understand the formula.
Ver también
Categorías
Más información sobre Multirate Signal Processing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!