fitlm() with 0 intercept function returns different values for R2 betwen MATLAB 2020a and 2020b?
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Dankur Mcgoo
el 24 de Feb. de 2021
Editada: Dankur Mcgoo
el 24 de Feb. de 2021
I am trying to find the coefficient of determination. I ran the same fitlm function in version 2020a and 2020b, but calling the 'Rsquared.Ordinary' variable gives me drastically different results.
2020a, R2 = 0.5432
2020b, R2 = -8.0637
Why are they different?
Here is the code I am using:
data =[1.8286, 2.0125; 2.5571, 2.3886; 2.0747, 2.3476; 1.6216, 2.0296;
4.6010, 2.4861; 2.6089, 2.4834; 2.0093, 2.5387; 2.4757, 2.5660;
2.5475, 2.6642; 2.4854, 2.6650];
mdl = fitlm(data(:,1), data(:,2),'Intercept',false);
R2 = mdl.Rsquared.Ordinary;
0 comentarios
Respuesta aceptada
the cyclist
el 24 de Feb. de 2021
Interesting. The 2020b result seems to be correct, based on the formula using sums of squares. (See, e.g. the definition on wikipedia page.)
% Original data
data =[1.8286, 2.0125; 2.5571, 2.3886; 2.0747, 2.3476; 1.6216, 2.0296;
4.6010, 2.4861; 2.6089, 2.4834; 2.0093, 2.5387; 2.4757, 2.5660;
2.5475, 2.6642; 2.4854, 2.6650];
% Define x,y for convenience
x = data(:,1);
y = data(:,2);
mdl = fitlm(x,y,'Intercept',false);
R2 = mdl.Rsquared.Ordinary
% Predicted y value, at x data
y_pred = predict(mdl,data(:,1));
% Calculate R^2 via sums of squares of residuals and total
R_squared_via_sum_of_squares = 1 - sum((y - y_pred).^2)/sum((y - mean(y)).^2)
Based on some playing around, but not quite well formulated enough to post here, I think 2020a might have been using a formula based on the correlation of y data vs. y predicted that is only valid when an intercept term is estimated, and therefore not accurate in your case.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Analysis of Variance and Covariance en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!