Are not all symmetric invertible matrices positive semidefinite??
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi,
I remember to learn that a symmetric matrix is positive semidefinite if and only if it is invertible. But the matrix 'covmat' in the .mat file that you can download using the below link is symmetric, invertible, but not positive semidefinite.
After loading ask.mat, you can try below code portions to check what I am saying.
issym(covmat); % you will get answer 1
inv(covmat); % you will get no error
mvnrnd(zeros(110, 1), covmat, 20); % you will get the error below:
??? Error using ==> mvnrnd at 118
SIGMA must be a symmetric positive semi-definite matrix.
How can it be possible? What is wrong with this matrix? Do I have some wrong knowledge of matrix properties of invertibleness, positive semidefiniteness, etc.?
Thanks!
0 comentarios
Respuesta aceptada
the cyclist
el 21 de Mayo de 2013
Your memory is incorrect. Consider the following matrix:
a = [ 1.0 0.8 -0.8;
0.8 1.0 0.8;
-0.8 0.8 .01]
It is not positive semi-definite (because it has a negative eigenvalue). However, it is symmetric and invertible. (It has non-zero determinant).
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!