How to save an rl agent after every 1000 episodes?

16 visualizaciones (últimos 30 días)
Guru Bhargava Khandavalli
Guru Bhargava Khandavalli el 7 de Mzo. de 2021
Editada: Lance el 29 de Jun. de 2023
I am training a DDPG agent where the training runs over 1000 episodes. To see how it evolves, I would like to save the agents after every 1000 episodes. As i see the options available in rlTrainingOptions, it is only possible to save every agent after a critical value. This slows down the training process significantly because saving every agent consumes a lot of time. Is there an efficient way to save the agents only after every 1000 episodes?
Thank you.
  1 comentario
Heesu Kim
Heesu Kim el 12 de Mzo. de 2021
Editada: Heesu Kim el 19 de Mzo. de 2021
I agree with this. I don't understand why it does not have the most useful option. And I'm disappointed that this question still doesn't have any answer.

Iniciar sesión para comentar.

Respuesta aceptada

Madhav Thakker
Madhav Thakker el 19 de Mzo. de 2021
Hi Guru,
I understand currently in rlTrainingOptions, there is no option to save the agent after specific number of episodes. I have raised an enhancement request for the same and this might be considered in future releases.
Hope this helps.
  2 comentarios
Dmitriy Ogureckiy
Dmitriy Ogureckiy el 20 de En. de 2023
I am the same opinion. Add this, please. Ball on your side.

Iniciar sesión para comentar.

Más respuestas (2)

Manuel Sebastian Rios Beltran
Manuel Sebastian Rios Beltran el 2 de Jun. de 2022
@Madhav Thakker But they did not do it :( a year later
  1 comentario
Matteo D'Ambrosio
Matteo D'Ambrosio el 28 de Mayo de 2023
2 years later! Agreed that this enhancement is much needed...

Iniciar sesión para comentar.


Lance
Lance el 23 de Jun. de 2023
Editada: Lance el 29 de Jun. de 2023
From what I understand, the only other work around would be to write another training command. You would have to predfine this for every "checkpoint" ie. 10,20,30 episodes. The training-progress graph will continue to be actively updated. (Note I am using R2022a)
% Define all agents, observations, actions, environment, etc....
maxepisodes=500;
trainingOpts=rlMultiAgentTrainingOptions;
trainingOpts.SaveAgentCriteria="EpisodeCount";
trainingOpts.SaveAgentValue=maxepisodes
trainingStats=train([agent1,agent2],environment,trainingOpts); % Will train to max episodes and save agent
% Edit Trainingoptions to increase maxepisodes and save agent value
trainingStats(1,1).TrainingOptions.MaxEpisodes=1000;
trainingStats(1,1).TrainingOptions.SaveAgentValue=[1000,1000];
trainnigStats(1,1).TrainingOptions.StopTrainingValue=[1000,1000];
trainingStats(1,2).TrainingOptions.MaxEpisodes=1000;
trainingStats(1,2).TrainingOptions.SaveAgentValue=[1000,1000];
trainnigStats(1,2).TrainingOptions.StopTrainingValue=[1000,1000];
% Resume training -- Will train to 1000 episodes and save agent again
trainingStats2=train([agent1,agent2],environment,trainingStats) %Note you use trainingStats here not trainingOpts
Let me know if this helps!

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by