'pca' vs 'svd' or 'eig' functions
12 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Pranav Aggarwal
el 16 de Mzo. de 2021
Comentada: Pranav Aggarwal
el 18 de Mzo. de 2021
Hi,
I am trying to generate the principal components from a set of data. However, i get an entirely different result when i use the 'pca' function compared to the 'eig' function. The 'eig' function gives the same results as the 'svd' function for my data.
I am using the raw data as input into the 'pca' function.
For 'eig' - I am calculating the correlation matrix and then using that as input into the 'eig' function.
I am very puzzled on why i get different results and would be grateful for your help! Code below:
testmat = rand(20,5);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
[sort(testsvd), sort(testeig), sort(testlatent)]
0 comentarios
Respuesta aceptada
the cyclist
el 16 de Mzo. de 2021
You will get the same result from pca() if you standardize the input data first:
rng default
testmat = rand(20,5);
% Standardize the data
testmat = (testmat - mean(testmat))./std(testmat);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
[sort(testsvd), sort(testeig), sort(testlatent)]
2 comentarios
Steven Lord
el 16 de Mzo. de 2021
To normalize the data you can use the normalize function to normalize by 'zscore' (which is the default normalization method.)
rng default
testmat = rand(20,5);
% Standardize the data
testmat = normalize(testmat);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
results = [sort(testsvd), sort(testeig), sort(testlatent)]
format longg
results - results(:, 1)
Looks pretty good to me.
Más respuestas (0)
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!