How do I solve a system of nonlinear differential equations like the one below?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Andrian Mirza
el 18 de Mzo. de 2021
Comentada: Star Strider
el 2 de Mayo de 2021
As seen below (ode1 ode2 ode3) are my equations and c_1 to c_9 are just some constants which will be later determined. Is there any way to solve this without numerical methods? Thank you!
syms x(t) y(t) z(t);
c_1 = 1
c_2 = 2
c_3 = 1
c_4 = 1
c_5 = 1
c_6 = 1
c_7 = 1
c_8 = 1
c_9 = 1
ode1 = diff(x,t) == c_1*(c_3-x) + c_2*(x-y);
ode2 = diff(y,t) == c_4*(x-y) - c_5*c_6*y*(1-z) + c_7*c_6*exp(c_8 - c_9*z);
ode3 = diff(z,t) == c_5*y*(1-z) - exp(c_8 - c_9*z);
odes = [ode1; ode2; ode3]
cond1 = y(0) == 0;
cond2 = x(0) == 0;
cond3 = z(0) == 0;
conds = [cond1 cond2 cond3];
0 comentarios
Respuesta aceptada
Star Strider
el 18 de Mzo. de 2021
Add t and Y to the syms declaration, and add these to the end of the posted code:
[VF,Subs] = odeToVectorField(odes);
odefcn = matlabFunction(VF, 'Vars',{t,Y});
Then use ‘odefcn’ with the numerical ODE integrator of your choise (such as ode45) to integrate them numerically.
Use the ‘Subs’ variable to determine the variable assignment order in the function and in the outputs of the integration.
2 comentarios
Star Strider
el 2 de Mayo de 2021
As always, my pleasure!
Try this —
syms x(t) y(t) z(t) t Y
c_1 = 1
c_2 = 2
c_3 = 1
c_4 = 1
c_5 = 1
c_6 = 1
c_7 = 1
c_8 = 1
c_9 = 1
ode1 = diff(x,t) == c_1*(c_3-x) + c_2*(x-y);
ode2 = diff(y,t) == c_4*(x-y) - c_5*c_6*y*(1-z) + c_7*c_6*exp(c_8 - c_9*z);
ode3 = diff(z,t) == c_5*y*(1-z) - exp(c_8 - c_9*z);
odes = [ode1; ode2; ode3]
[VF,Subs] = odeToVectorField(odes)
odefcn = matlabFunction(VF, 'Vars',{t,Y});
[t,y] = ode45(odefcn, [0 50], zeros(1,3)+1E-8);
figure
plot(t, y)
grid
legend(string(Subs), 'Location','best')
ylim([-1 1]*5)
.
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



