Can someone help me with this Matlab code on 2D heat equation
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Eshna Sasha
el 2 de Abr. de 2021
Comentada: Eshna Sasha
el 2 de Abr. de 2021
I want to plot the temperature contour for the equation ∂T/∂t = ∂2T/∂x2 + ∂2T/∂y2,
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/570509/image.jpeg)
The initial condition is taken to be t=0
It throws an error: Index in position 1 exceeds array bounds (must not exceed 1).
Here's my code:
>> nx=10;
>> ny=nx;
>> nt=100;
>> x=linspace(0,1,nx);
>> y=linspace(0,1,ny);
>> dx=x(2)-x(1);
>> dy=dx;
>> error=9e9;
>> tolerance=1e-4;
>> dt=1e-3;
>> T_L=0;
>> T_T=1;
>> T_R=0;
>> T_B=0;
>> T=300*ones(nx,ny);
>> T(2:ny-1,1)= T_L;
>> T(2:ny-1,nx)=T_R;
>> T(1,2:nx-1)=T_T;
>> T(ny,2:nx-1)=T_B;
>> T_old= T;
>> T_initial=0;
>> k1=1.1*(dt/(dx^2));
>> k2=1.1*(dt/(dy^2));
>> Jacobi_iteration=1;
>> for k= 1:nt
error=9e9;
while(error>tolerance)
for i=2:nx-1
for j= 2:ny-1
Term_1= 1/(1+(2*k1)+(2*k2));
Term_2= k1*Term_1;
Term_3= k2*Term_1;
H= (T_old(i-1,j))+(T_old(i+1,j));
V=(T_old(i,j+1))+(T_old(i,j-1));
T(i,j)= (T_initial(i,j)*Term_1)+ (H*Term_2)+(V*Term_3);
end
end
error=max(max(abs(T_old-T)));
T_old=T;
Jacobi_iteration= Jacobi_iteration+1;
end
T_intial=0;
%Plotting
figure(1)
contourf(x,y,T)
clabel(contourf(x,y,T))
colobar
colormap(jet)
set(gca,'ydir','reverse')
xlabel('X-Axis')
y-label('Y-Axis')
title(sprintf('No. of Unsteady Jacobi Iterations(Implicit)=%d', Jacobi_iteration));
pause(0.03)
end
0 comentarios
Respuesta aceptada
Ravi Kumar
el 2 de Abr. de 2021
Your T_initial is declared as a scalar, you are getting the error when you try to index into it beyond its size. Make that zeros of same size as T. You will find the corrected code below. On a related note, if you want to solve more general problems, check PDE Toolbox Heat Transfer workflow.
Regards,
Ravi
nx=10;
ny=nx;
nt=100;
x=linspace(0,1,nx);
y=linspace(0,1,ny);
dx=x(2)-x(1);
dy=dx;
error=9e9;
tolerance=1e-4;
dt=1e-3;
T_L=0;
T_T=1;
T_R=0;
T_B=0;
T=300*ones(nx,ny);
T(2:ny-1,1)= T_L;
T(2:ny-1,nx)=T_R;
T(1,2:nx-1)=T_T;
T(ny,2:nx-1)=T_B;
T_old= T;
T_initial=zeros(size(T));
k1=1.1*(dt/(dx^2));
k2=1.1*(dt/(dy^2));
Jacobi_iteration=1;
for k= 1:nt
error=9e9;
while(error>tolerance)
for i=2:nx-1
for j= 2:ny-1
Term_1= 1/(1+(2*k1)+(2*k2));
Term_2= k1*Term_1;
Term_3= k2*Term_1;
H= (T_old(i-1,j))+(T_old(i+1,j));
V=(T_old(i,j+1))+(T_old(i,j-1));
T(i,j)= (T_initial(i,j)*Term_1)+ (H*Term_2)+(V*Term_3);
end
end
error=max(max(abs(T_old-T)));
T_old=T;
Jacobi_iteration= Jacobi_iteration+1;
end
T_intial=0;
%Plotting
figure(1)
contourf(x,y,T)
clabel(contourf(x,y,T))
colorbar
colormap(jet)
set(gca,'ydir','reverse')
xlabel('X-Axis')
ylabel('Y-Axis')
title(sprintf('No. of Unsteady Jacobi Iterations(Implicit)=%d', Jacobi_iteration));
pause(0.03)
end
Más respuestas (0)
Ver también
Categorías
Más información sobre Eigenvalue Problems en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!