Double Variable Second order Differential Equation
19 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Shabeel Samad
el 6 de Abr. de 2021
Comentada: Sajawal Feroze
el 20 de Abr. de 2022
I am attempting to solve a double mass-spring-damper system. I already solved for single mass using ode45. However I am unable to figure out how to use this with two variables and also solve a second order differential.
The Equation I used was
The function I used is shown below.
function dy=damped_spring_mass(F,m,D,w0,b,t,y)
x=y(1);
v=y(2);
dy=zeros(2,1);
dy(1)=v;
dy(2)=(F*sin(w0*t)-D*x-c*v)/m;
I used this function to in ode45 as shown below
y0=[0;0];
tspan=[0 30];
%% Spring constants
k1= 5;
k01 = 1;
k12 = 2;
c=0.1;
D1= k1+c*(k01+k12);
%% mass constants
m1=1;
%% Damper C0fficients
b1=3;
%% Force
F= 0.1;
w0=2;
%% Diff Eq and plot
[Td,Yd]=ode45(@(t,y) damped_spring_mass(F,m1,D1,w0,b1,t,y),tspan,y0);
plot(Td,Yd(:,1));
For a double mass system, I have two equations
The new constants are provided below
%% Spring constants
k2= 2;
k23 = 3;
k34 = 1;
c=0.1;
D2= k2+c*(k23+k34);
%% mass constants
m2=2;
%% Damper C0fficients
b2=5;
Any help would be greatly appreciated. If you need more information please let me know!
0 comentarios
Respuesta aceptada
James Tursa
el 9 de Abr. de 2021
Just write a derivative function using four states instead of two. The states will be x, y, dxdt, and dydt. The derivitives of these states will be dxdt, dydt, d2xdt2, and d2ydt2. E.g.,
function dy = damped_spring_mass(t,y, other constants )
dxdt = y(3);
x = y(1);
dydt = y(4);
y = y(2);
d2xdt2 = your expression for this in terms of constants and x, y, dxdt, dydt
d2ydt2 = your expression for this in terms of constants and x, y, dxdt, dydt
dy = [dxdt;dydt;d2xdt2;d2ydt2];
end
5 comentarios
James Tursa
el 12 de Abr. de 2021
The dy should be the last line in your derivative function code. E.g.,
function dy=damped_spring_mass(F,m,n,K,k,J,w0,d,b,t,y)
dxdt = y(3);
x = y(1);
dydt = y(4);
y = y(2);
d2xdt2 =(F*sin(w0*t)-d*dxdt+d*dydt-K*x+K*y)/m;
d2ydt2 =((d-b)*dydt-d*dxdt+k*x-J*y)/n;
dy = [dxdt;dydt;d2xdt2;d2ydt2];
end
Más respuestas (1)
Merve Buyukbas
el 6 de Abr. de 2021
2 comentarios
Sajawal Feroze
el 20 de Abr. de 2022
https://www.mathworks.com/matlabcentral/answers/434127-how-to-solve-system-of-2nd-order-differential-equations-using-ode45
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!