How to avoid rounding error

4 visualizaciones (últimos 30 días)
Ewout Audenaert
Ewout Audenaert el 9 de Abr. de 2021
Comentada: Walter Roberson el 10 de Abr. de 2021
When I use lu[A] for A = [10^(-20) 1 ; 1 2] I get 2 matrices (L and U). When I multiply them, the result is not the same as the original matrix A. What method can I use in order to get the correct matrix A?
  1 comentario
Rik
Rik el 9 de Abr. de 2021
You could try vpa.
The more fundamental problem is that computers have finite precision. If you want infinite precision, you will need to use algebraic tools. Not every problem can be solved perfectly. The general solution for this is to avoid problems that span more than 20 orders of magnitude, so you can rely on eps to estimate if your results are close enough.

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 9 de Abr. de 2021
A = [sym(10)^(-20) 1 ; 1 2]
A = 
[L,U] = lu(A)
L = 
U = 
L*U - A
ans = 
You can see from this that in order to get back A exactly, then you need a system that can distinguish 99999999999999999998 from 100000000000000000000, but
eps(100000000000000000000)
ans = 16384
it certainly is not double precision arithmetic.
  1 comentario
Walter Roberson
Walter Roberson el 10 de Abr. de 2021
syms N real
A = [sym(10)^(-N) 1 ; 1 2]
A = 
[L,U] = lu(A)
L = 
U = 
eqn = U(2,2) == -1/eps
eqn = 
solve(eqn)
ans = 
vpa(ans)
ans = 
15.653559774527022343979915836331
So beyond about 10^15.65 you go beyond what can be represented exactly in double precision.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numbers and Precision en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by