How do you do multi-class classification with a CNN network?

9 visualizaciones (últimos 30 días)
Currently I have a CNN network with a the classification layer.
net = alexnet;
layersTransfer = net.Layers(1:end-3);
numClasses = 5;
layers = [
layersTransfer
fullyConnectedLayer(numClasses,'Name', 'fc','WeightLearnRateFactor',1,'BiasLearnRateFactor',1)
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'classOutput')];
There are 5 different classes and each image can have multiple classes. However I can not find a way to train a network where each image has more than one possible class. How can I change my network so I can train it with data where there are multiple labels?

Respuesta aceptada

Mahesh Taparia
Mahesh Taparia el 19 de Abr. de 2021
Hi
As per your problem, I am assuming you are having multiple categorical objects in a single image. So the problem is no longer an image classification, it is an object detection problem. You can refer to the documentation of object detection, here are some useful links:
Hope it will help!
  4 comentarios
Michael Bilenko
Michael Bilenko el 24 de Abr. de 2021
Thanks for the suggestion. How do I implement a custom loss layer?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Recognition, Object Detection, and Semantic Segmentation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by