How to classify images depending on the shape of each image's object ?

9 visualizaciones (últimos 30 días)
Mohamed Elbeialy
Mohamed Elbeialy el 21 de Abr. de 2021
Comentada: Amit el 5 de Jun. de 2021
  6 comentarios
Mohamed Elbeialy
Mohamed Elbeialy el 24 de Abr. de 2021
5 classes of cars, flowers, buidlings, trees, dogs. The point is to classify them according to the shape of the object inside each image. Using max value of the image is just a hint. if you have another way to determine the shape of object, ues it .
Amit
Amit el 5 de Jun. de 2021
Follow following steps,
  1. First of all you need to binarize the image and find edges of image using canny edge detection.
  2. Then you need use regionprops to extract various isolated regions in the image.
  3. You need to find centroid of regions.
  4. Then at various angles, you can find distance between centroid of region and point on edge of image.
  5. This makes your shape descriptors.
  6. You can compare these descriptors with descriptors of known share to categorize your query or unkown object.
This should work for you.
I have my IEEE paper published regarding above process, you can send request to me on, amit.kenjale@gmail.com, I will send you my IEEE paper where this process is explained in details with images showing intermediate results.

Iniciar sesión para comentar.

Respuestas (3)

Mahesh Taparia
Mahesh Taparia el 24 de Abr. de 2021
Hi
There is already an existing answer similar to this problem. You can refer this link for that.

Image Analyst
Image Analyst el 24 de Abr. de 2021
Try the transfer learning example with CNN/AlexNet. There should be demos in the Deep Learning Toolbox.
  30 comentarios
Mohamed Elbeialy
Mohamed Elbeialy el 27 de Abr. de 2021
Here it is. how to make sure that the network will detect all random shapes of all images inside the imageData store
Image Analyst
Image Analyst el 27 de Abr. de 2021
To get a binary image mask of inside where you traced the outline:
binaryImage = grayImage < someValue;
You'd have to train (label) your training images all with the outline and with the class you know them to be (car, dog, etc.)

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 25 de Abr. de 2021
imageInputLayer([227 227 3],"Name","data","Normalization","rescale-zero-one")
This will rescale each input image to have a maximum value of 1.
  20 comentarios
Mohamed Elbeialy
Mohamed Elbeialy el 27 de Abr. de 2021
here it is, however, I stucked with (gTruth ) which does not allow me to insert all imageData store images [imds,blds] = objectDetectorTrainingData(gTruth)
Image Analyst
Image Analyst el 27 de Abr. de 2021
You asked: "I do find the code for detecting object inside image, but I do not know how to apply to the whole imageDatastore." So, try this:
ds = imageDatastore('*.png')
numFiles = numel(ds.Files)
% Apply "code for detecting object inside image" to "the whole
% imageDatastore" - apply to every image in the image datastore.
for k = 1 : numFiles
thisFullFileName = ds.Files{k};
fprintf('Analyzing #%d of %d : "%s" ...\n', k, numFiles, thisFullFileName);
theImage = imread(thisFullFileName);
imshow(theImage);
[folder, baseFileNameNoExt, ext] = fileparts(thisFullFileName);
title(baseFileNameNoExt, 'Interpreter', 'none');
drawnow;
% Now give code to do something to analyze theImage...
% Put your existing code "for detecting object inside image" here:
end

Iniciar sesión para comentar.

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by