Fournier Command and Integral Command
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Good day,
I would like to ask for your assistance regarding the use of matlab code. The given equation is t/9+t^2. Now, I was able to put in the code in matlab as follows:
Fournier Code:
syms w t
f = t/(9 + t^2)
F = fourier(f)
pretty(F)
However, I need to have an integral command for this example. The answer must be similar in the given picture..
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/597905/image.png)
Can you provide me the integral command given the fournier command specified above? Thank you.
0 comentarios
Respuestas (1)
Star Strider
el 26 de Abr. de 2021
Editada: Star Strider
el 27 de Abr. de 2021
I hope this is not homework!
syms w t T
f = t/(9 + t^2)
F = int(f*exp(-1j*w*t), t, -T, T)
F = int(f*exp(-1j*w*t), t, -1, 1)
F = simplify(f,500)
2 comentarios
Star Strider
el 27 de Abr. de 2021
Editada: Star Strider
el 27 de Abr. de 2021
I changed the sign of the exponent in the edited version just now (although that is irrelevant, so long as the inverse transform has the opposite sign). The limits of integration can be ±Inf or ±T or ±1 since that makes no difference in the integral, so long as they are symmetrical (in this instance).
EDIT — (27 Apr 2021 at 03:41)
syms w t
f = t/(t+9*t^2)
F1 = int(f*exp(-1j*w*t), t, -1, 1)
F1 = simplify(F1, 500)
F2 = integrateByParts((t/(t+9*t^2))*exp(-1j*w*t), diff(t))
F2(t) = simplify(F2, 500)
IntF2 = F2(1)-F2(-1)
IntF2 = simplify(IntF2, 500)
.
Ver también
Categorías
Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!