I could not integrate using MatLab, Can you please help me?

27 visualizaciones (últimos 30 días)
In solving a problem I need to integrate the following function with respect to 't' from the limit 0 to t.
3*2^(1/2)*(1 - cos(4*t))^(1/2)*(a^2 + c^2)^(1/2)
I used the following commands but got the same result as given herewith.
>> syms a c t real
mag_dr = 3*2^(1/2)*(1 - cos(4*t))^(1/2)*(a^2 + c^2)^(1/2)
>> int(mag_dr,t,0,t)
ans =
int(3*2^(1/2)*(1 - cos(4*t))^(1/2)*(a^2 + c^2)^(1/2), t, 0, t)
Let me know the best way(s) to tackle this type of problem.

Respuesta aceptada

Dyuman Joshi
Dyuman Joshi el 5 de Mayo de 2021
Editada: Dyuman Joshi el 6 de Mayo de 2021
syms t a c
fun = 3*2^(1/2)*(1 - cos(4*t))^(1/2)*(a^2 + c^2)^(1/2);
z = int(fun,t); %gives indefinite integral
%result of integration, z = -(3*sin(4*t)*(a^2 + c^2)^(1/2))/(2*(sin(2*t)^2)^(1/2));
t=0;
res = z - subs(z);
%obtain final result by evaluating the integral, z(t)-z(0), by assigning t & using subs()
However, you will not get the result. See @Walter Roberson's comment below for more details.
  1 comentario
Walter Roberson
Walter Roberson el 5 de Mayo de 2021
Editada: Walter Roberson el 5 de Mayo de 2021
Not quite.
syms t a c
fun = 3*2^(1/2)*(1 - cos(4*t))^(1/2)*(a^2 + c^2)^(1/2);
z = int(fun,t); %gives indefinite integral
char(z)
ans = '-(3*sin(4*t)*(a^2 + c^2)^(1/2))/(2*(sin(2*t)^2)^(1/2))'
z0 = limit(z, t, 0, 'right');
char(z0)
ans = '-3*(a^2 + c^2)^(1/2)'
res = simplify(z - z0);
char(res)
ans = '3*(a^2 + c^2)^(1/2) - (3*sin(4*t)*(a^2 + c^2)^(1/2))/(2*(sin(2*t)^2)^(1/2))'
fplot(subs(z, [a,c], [1 2]), [-5 5])
fplot((subs(fun,[a,c], [1 2])), [-5 5])
That is, the problem is that the integral is discontinuous at t = 0 and that is why int() cannot resolve it.

Iniciar sesión para comentar.

Más respuestas (2)

Walter Roberson
Walter Roberson el 5 de Mayo de 2021
syms a c t real
mag_dr = 3*2^(1/2)*(1 - cos(4*t))^(1/2)*(a^2 + c^2)^(1/2)
mag_dr = 
z = int(mag_dr, t)
z = 
z - limit(z, t, 0, 'right')
ans = 
The integral is discontinuous at 0, which is why it cannot be resolved by MATLAB.
  4 comentarios
Dyuman Joshi
Dyuman Joshi el 6 de Mayo de 2021
The wrong substitution was a mistake on my part, mostly cause I did it in a hurry. I have edited my nswer accordingly as well. Other than that, is subs() a good approach or would you recommend otherwise?
Walter Roberson
Walter Roberson el 6 de Mayo de 2021
limit() is more robust than subs() for cases like this. But limit() is sometimes quite expensive to calculate, or is beyond MATLAB's ability to calculate, even in some finite cases.

Iniciar sesión para comentar.


Sindhu Karri
Sindhu Karri el 5 de Mayo de 2021
Hii
The "int" function cannot solve all integrals since symbolic integration is such a complicated task. It is also possible that no analytic or elementary closed-form solution exists.
For definite integrals, a numeric approximation can be performed by using the "integral" function.

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by