
How can I demonstrate that a MA(2) process is invertible?
    18 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Filippo Patrignani
 el 14 de Mayo de 2021
  
    
    
    
    
    Comentada: Filippo Patrignani
 el 17 de Mayo de 2021
            I have to solve this exercise: Consider the following MA(2) process yt = 1 − 0.5εt−1 + 0.3εt−2 + εt . Is the moving average process invertible? Explain. Hint: Use Matlab to compute the roots of the relevant polynomial. Can anyone help me?. 
Thanks 
0 comentarios
Respuesta aceptada
  Pratyush Roy
    
 el 17 de Mayo de 2021
        Hi,
Since the constant term does not matter in terms of whether the series converges or diverges, we can ignore it and hence the equation can be written as:

Here z(t) = y(t)-1
Now, the relevant polynomial becomes p(x) = 1-0.5x+0.3x^2;
To check whether the model is invertible or not, we compute the roots of p(x) = 0 using the roots method. 
Hope this helps! 
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

