How can I demonstrate that a MA(2) process is invertible?

13 visualizaciones (últimos 30 días)
I have to solve this exercise: Consider the following MA(2) process yt = 1 − 0.5εt−1 + 0.3εt−2 + εt . Is the moving average process invertible? Explain. Hint: Use Matlab to compute the roots of the relevant polynomial. Can anyone help me?.
Thanks

Respuesta aceptada

Pratyush Roy
Pratyush Roy el 17 de Mayo de 2021
Hi,
Since the constant term does not matter in terms of whether the series converges or diverges, we can ignore it and hence the equation can be written as:
Here z(t) = y(t)-1
Now, the relevant polynomial becomes p(x) = 1-0.5x+0.3x^2;
To check whether the model is invertible or not, we compute the roots of p(x) = 0 using the roots method.
Hope this helps!

Más respuestas (0)

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by