Solve equation for one unknown with one known parameter

2 visualizaciones (últimos 30 días)
onur karakurt
onur karakurt el 18 de Mayo de 2021
Comentada: Star Strider el 19 de Mayo de 2021
clear all
clc
a=0.5
x=linspace(-2*a,2*a,100)
eqn=@(x,y,a)(1/2*a^2)*[x^2./(2-(1-(x./(2*a))^2-(y./(2*a))^2)+sqrt((1-(x./(2*a))^2-(y./(2*a))^2)+(y./a)^2))-y^2./((1-(x./(2*a))^2-(y./(2*a))^2)+sqrt((1-(x./(2*a))^2-(y./(2*a))^2)+(y./a)^2))]-1==0;
solve(eqn,y)
Answer is
Unrecognized function or variable 'y'.
Error in naca (line 6)
solve(eqn,y)
how can I solve y for x matrix value
  2 comentarios
onur karakurt
onur karakurt el 18 de Mayo de 2021
Also
ı dont want to use syms subprogram
value must be numerical
Star Strider
Star Strider el 18 de Mayo de 2021
The actual equations are:
I = imread('https://www.mathworks.com/matlabcentral/answers/uploaded_files/621828/image.png');
figure
imshow(I)
.

Iniciar sesión para comentar.

Respuesta aceptada

Star Strider
Star Strider el 18 de Mayo de 2021
Try something like this —
a=0.5;
% x=linspace(-2*a,2*a,100)
x=linspace(-2*a,2*a,20);
eqn=@(x,y,a)(1/2*a^2)*[x^2./(2-(1-(x./(2*a))^2-(y./(2*a))^2)+sqrt((1-(x./(2*a))^2-(y./(2*a))^2)+(y./a)^2))-y^2./((1-(x./(2*a))^2-(y./(2*a))^2)+sqrt((1-(x./(2*a))^2-(y./(2*a))^2)+(y./a)^2))]-1;
for k = 1:numel(x)
yv(k,:) = fsolve(@(y)eqn(x(k),y,a), 10);
end
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient. Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
Results = table(x', yv)
Results = 20×2 table
Var1 yv _________ ______ -1 1.9833 -0.89474 2.1056 -0.78947 2.2028 -0.68421 2.2812 -0.57895 2.3444 -0.47368 2.3946 -0.36842 2.4335 -0.26316 2.4619 -0.15789 2.4805 -0.052632 2.4897 0.052632 2.4897 0.15789 2.4805 0.26316 2.4619 0.36842 2.4335 0.47368 2.3946 0.57895 2.3444
It might be necessary to use the uniquetol function to eliminate duplicate (or near-duplicate) values of ‘yv’ and thier associated ‘x’ values.
.
  9 comentarios
Star Strider
Star Strider el 19 de Mayo de 2021
As always, my pleasure!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Linear Least Squares en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by