Eigenvectors of A'*A for non-square matrix A
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Let A be a non-square matrix. How can we determine the eigenvector associated with the minimum eigenvalue of the matrix A'*A?
In that paper, it is suggested to use "svd"-function, but how exactly?
1 comentario
David Goodmanson
el 19 de Mayo de 2021
Hi Urs, you can look up the svd on wikipedia and go to 'Relation to eigenvalue decomposition'
Respuestas (1)
Jaynik
el 1 de Mzo. de 2024
Hi,
If you have the matrix A, you can directly use the "eig" function to obtain the eigen vector associated with the minimum eigen value. Following is the code to do the same:
B = A'*A;
[V, D] = eig(B);
[min_eigenvalue, index] = min(diag(D)); % The diagonal of D contains the eigenvalues.
min_eigenvector = V(:, index); % The corresponding column in V is the associated eigenvector.
Alternatively, the "svd" function provides the singular values, which are the square roots of the non-negative eigenvalues of A'*A, and the right singular vectors: Following code can be used for the same:
[U, S, V] = svd(A'*A);
[~, minIndex] = min(diag(S)); % The diagonal elements of S are the square roots of eigenvalues.
min_eigenvector = V(:, minIndex);
You can refer the following documentation to read more about these functions:
- eig: https://www.mathworks.com/help/matlab/ref/eig.html
- svd: https://www.mathworks.com/help/matlab/ref/double.svd.html
Hope this helps!
0 comentarios
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!