How do I find Rsquared?
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Renan Fraga
el 22 de Mayo de 2021
Comentada: Sulaymon Eshkabilov
el 23 de Mayo de 2021
Hello! Please, I need help. Tried everything and couldn't do it.
I have 2 vectors of values:
T0 = [-49;-45;-19;-20;30;30;100;98;238;239;350;349];
Y = [0;0;0;0;12;8;48;44;46;34;34;40];
And I need to use the equation F=A+B*tanh((T-T0)/C) to fit these points. So I'm using the optimoptions to find the best fit:
lb = [];
ub = [];
% Starting point
x0 = [10;10;10;10];
F = @(x) (x(1) + x(2)*tanh((x(3) - T0)/x(4)) );
Fobj = @(x,T0) F(x);
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
x = lsqcurvefit(Fobj,x0,T0,Y,lb,ub,options);
I know (using the Curve Fit Toolbox) that the values of x are supposed to create a curve with Rsquared = 0.9585, but even using the function corrcoef I can't find this R squared.
Can anybody, please help?
0 comentarios
Respuesta aceptada
Sulaymon Eshkabilov
el 22 de Mayo de 2021
Hi,
Here is the quick solution:
% Starting point
x0 = [10;10;10;10];
F = @(x) (x(1) + x(2)*tanh((x(3) - T0)/x(4)) );
Fobj = @(x,T0) F(x);
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
x = lsqcurvefit(Fobj,x0,T0,Y,lb,ub,options);
FM = (x(1) + x(2)*tanh((x(3) - T0)/x(4)) );
plot(T0, Y, 'ro', T0, FM, 'b--')
RSS = sum((Y-FM).^2);
TSS = sum((Y-mean(Y)).^2);
R_sq = 1-RSS/TSS;
fprintf('R square = %1.3f \n', R_sq)
Good luck.
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Get Started with Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!