Help recreating square wave from equation

1 visualización (últimos 30 días)
Mackenzie Weeks
Mackenzie Weeks el 24 de Mayo de 2021
Comentada: Mackenzie Weeks el 24 de Mayo de 2021
Hello,
I need help recreating a square wave from the following equation:
Thanks!

Respuesta aceptada

Sulaymon Eshkabilov
Sulaymon Eshkabilov el 24 de Mayo de 2021
Editada: Sulaymon Eshkabilov el 24 de Mayo de 2021
Hi,
IHere is the correct code:
t = ..
T = ..
n=1:2:15; % By increasing n = 1:2:25, you will get much better approximation.
U1 = sum((4/pi)*(1./n(:)).*sin(2*pi*n(:).*t/T));
figure
plot(t, U1, 'r')
Good luck.
  3 comentarios
Sulaymon Eshkabilov
Sulaymon Eshkabilov el 24 de Mayo de 2021
Editada: Sulaymon Eshkabilov el 24 de Mayo de 2021
Run this or you can increase more n end value:
n=1:2:75; % By increasing, you will get much better approximation
You can run and plot n=1 and n=1:2:75.
Note that the Gibbs phenomenon (ripples on both ends of the rectangle wave) will be present no matter how big the number of series. Study Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon
Rectangle wave shown in your given mathworks source is obtained with square() builtin function that is different from this Fourier series approximation.
Good luck.
Mackenzie Weeks
Mackenzie Weeks el 24 de Mayo de 2021
Oh ok I see! Thank you!!

Iniciar sesión para comentar.

Más respuestas (1)

Sulaymon Eshkabilov
Sulaymon Eshkabilov el 24 de Mayo de 2021
Hi,
It is a quite straightforward exercise. You can create this signal using a colon operator (:), or [for .. end] or [while .. end] loop. Colon operator is the most efficient one.
Good luck.
  1 comentario
Mackenzie Weeks
Mackenzie Weeks el 24 de Mayo de 2021
Editada: Mackenzie Weeks el 24 de Mayo de 2021
Hi
I'm confused by your answer.
This is currently what I have so far, which creates this plot. But im pretty sure the square wave should be closer to the wave itself? I'm supposed to plot where n = 1 3 5 7 and 15.
clc;clear all;
%u(t)= (4/pi) * (1/n)sin * (2*pi*n*
t=0:0.01:1;
T = 1;
n = 5;
x=(4/pi)*(1/n)*sin(2*pi*n*(t/T));
sq= square(x);
figure(1);
plot(t,x)
hold on;
plot(t,sq)

Iniciar sesión para comentar.

Categorías

Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by