Plz, Edit the NEWFF according to the latest version of MATLAB.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Anjireddy Thatiparthy
el 6 de Ag. de 2013
Comentada: Greg Heath
el 24 de Oct. de 2013
when i simulate the below code it is showing some errors.
like obsolete way of using NEWFF.
what is the new model for it ?
Can some one edit the NEWFF according to the latest version.
- load data.txt
- P = data(1:15,1);
- T = data(16:30,1);
- a = data(31:45,1);
- s = data(46:60,1);
- [py, pys] = mapminmax(P');
- [ay, ays] = mapminmax(a');
- [ty, tys] = mapminmax(T');
- [sy, sys] = mapminmax(s');
- net = newff(minmax(py),[6 1], {'logsig','logsig'}, 'triangdm')
- net.trainParam.epochs = 3000;
- net.trainParam.lr = 0.5;
- net.trainParm.mc = 0.8;
- net = train(net,py,ty);
- y = sim(net,ay);
6 comentarios
Greg Heath
el 13 de Ag. de 2013
Editada: Greg Heath
el 13 de Ag. de 2013
1. That is not a clear explanation AND it seems to have little to do with your original post.
2. Why are you posting an equation that
a. is obsolete
b. has inappropriate transfer functions
c. has a misspelled training function (to which you were alerted earlier)
3. If you have 2012a, why are you trying to use the obsolete newff?
4. Now it seems that you might want the simple classifier
output = hardlim(input-5663)
4. Please clarify.
a. Single output y(t) = ( 566x.xx or 0/1?)
b. Corresponding input y( t-d:t-1)
Respuesta aceptada
Greg Heath
el 11 de Ag. de 2013
This is a Time-Series Problem that can be solved using NARNET with a feedback delay of 15.
help NARNET
doc NARNET
Search NARNET in the NEWSGROUP and ANSWERS
Thank you for formally accepting my answer
Greg
0 comentarios
Más respuestas (1)
Greg Heath
el 7 de Ag. de 2013
if true
% code
end
clear all, clc
[ inputs, targets ] = simplefit_dataset;
P = inputs(1:2:end);
T = targets(1:2:end);
[ I N ] = size(P)
[ O N ] = size(T)
MSE00 = var(T,1) % 8.3328 Reference MSE
Neq = N*O % No. of equations = prod(size(T)
a = inputs(2:2:end);
s = targets(2:2:end);
% Nw = (I+1)*H+(H+1)*O % No. of weights = Nw
{Hub = -1+ceil( (Neq-O)/(I+O+1)) % 15 (Neq >= Nw)
Hmin = 0
dH = 2
Hmax =ceil(Hub/2)
Ntrials = 10
MSEgoal = MSE00/100
MinGrad = MSEgoal/10
rng(0)
j = 0
for h = Hmin:dH:Hmax
j=j+1
if h ==0
net = newff(P,T, []);
else
net=newff(P,T,h);
end
for i = 1:Ntrials
hidden = h
ntrials = i
net.trainParam.goal = MSEgoal;
net.trainParam.min_grad = MinGrad;
[ net tr Y E ]= train(net,P,T);
NMSE(i,j) = mse(E)/MSE00;
end
end
NMSEtst = mse(s-net(a))/var(s,1) %4.0567e-005
H = Hmin:dH:Hmax
NMSE=NMSE
2 comentarios
Greg Heath
el 24 de Oct. de 2013
Sorry I missed your comment. If you have any SPECIFIC questions on the code,
please post.
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!