Problem with the null space

3 visualizaciones (últimos 30 días)
Juan Ignacio Mulero Martínez
Juan Ignacio Mulero Martínez el 27 de Mayo de 2021
I have the following matrix:
X=[0 0 0 0 0 0 0 0 -146 -80 -258 -134 -11 -215 5 -119;
0 0 0 0 -146 80 258 -16 0 0 0 0 48 -156 64 -60;
0 0 0 0 -11 215 393 119 48 114 -64 60 0 0 0 0;
146 -80 258 254 0 0 0 0 0 0 0 0 183 -21 199 75;
11 -215 123 119 0 0 0 0 -87 -21 -199 -75 0 0 0 0;
-48 -274 64 60 -205 21 199 -75 0 0 0 0 0 0 0 0];
When I calculate the a rational basis of the null space with null (X, 'r') and apply X * null (X, 'r') I get the matrix:
[0 0 0 0 0 0 0 0 -0.0000 0 0;
0 0 0 -0.0000 0.0008 -0.0029 0.0001 0.0003 0.0014 -0.0015 0.0012;
0 0 0.0000 0 0.0048 -0.0005 -0.0005 0.0008 0.0003 0.0001 0.0043;
0 0 0 0 -0.0006 0.0003 -0.0006 0.0006 0.0002 0.0015 -0.0019;
0 0 0 0 0.0001 0.0011 -0.0003 0.0008 0.0002 0.0037 -0.0004;
0.0000 -0.0000 0 0 -0.0007 -0.0025 0.0002 0.0011 0.0020 0.0023 0.0001]
which is clearly not zero. Something is wrong here. On the other hand, if I work with the reduced row echelon form, I do get the zero matrix when computing rref (X) * null (X, 'r'). The RREF matrix has the same null space as the original matrix X. Why does this difference occur in the result?

Respuestas (0)

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by