Plot Confidence Interval of 95%
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi, I used the optimoptions to find the fitted curve of my result points, and now I'm trying to plot the points, the fitted curve and the confidence interval.
These are the points:
T0 = [-49;-45;-19;-20;30;30;100;98;238;239;350;349];
Y = [0;0;0;0;12;8;48;44;46;34;34;40];
And this is the code to find the fitted curve:
lb = [];
ub = [];
% Starting point
x0 = [10;10;10;10];
F = @(x) (x(1) + x(2)*tanh((x(3) - T0)/x(4)) );
Fobj = @(x,T0) F(x);
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
x = lsqcurvefit(Fobj,x0,T0,Y,lb,ub,options);
So how can I plot the points, the fitted curve and the confidence interval together?
0 comentarios
Respuestas (1)
Star Strider
el 30 de Mayo de 2021
The nlpredci funciton will work here, however in the presence of a constrained optimisation, no confidence limits may be reliable.
T0 = [-49;-45;-19;-20;30;30;100;98;238;239;350;349];
Y = [0;0;0;0;12;8;48;44;46;34;34;40];
% And this is the code to find the fitted curve:
lb = [];
ub = [];
% Starting point
x0 = [10;10;10;10];
F = @(x) (x(1) + x(2)*tanh((x(3) - T0)/x(4)) );
Fobj = @(x,T0) F(x);
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqcurvefit(Fobj,x0,T0,Y,lb,ub,options);
[Ypred,delta] = nlpredci(Fobj,T0,x,residual,'Jacobian',jacobian);
figure
plot(T0, Y,'p')
hold on
plot(T0, Ypred,'-r', T0,delta*[-1 1]+Ypred, '--r')
hold off
grid
legend('Data', 'Fitted Regression', '95% Confidence Limits', 'Location','best')
.
4 comentarios
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
