Problem/question with regression
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Teshan Rezel
el 31 de Mayo de 2021
Respondida: William Rose
el 31 de Mayo de 2021
Hi folks,
I have the following data:
Reflectance R G B
7.51 109 54 124
3.17 57 30 63
1.24 30 17 31
I am trying to get a relationship for reflectance based on the R, G and B values. Doing this using simultaneous equations yields the following coefficients:
0.452923977
-0.538011696
-0.103274854
which is problematic because it gives me negative values for fomr RGB values, which is incorrect. So I tried to regress the table above in Matlab's curve fitting app, but it doesn't let me as the matrix dimensions aren't compatible.
Is there a way to get around this problem and regress the data?
Thanks
0 comentarios
Respuesta aceptada
William Rose
el 31 de Mayo de 2021
You need at least one more data point to do a standard regression, so that you have more equations than unknowns.
Even with more points, it is possible that the regression equation will predict negative reflectance for some combinatons of R, G, B. If you want a model that will never give values outside [0,1], then you need a nonlinear model. You could take the linear prediction and apply a hard or smooth limit funciton to it. Suppose your linear model is rinit=a*R+b*G+c*B. The code below shows final reflectance, rfinal, computed with hard and smooth limits.
rinit=-1:.05:2;
rfinalH=min(max(rinit,0),1);
rfinalS=exp(4*(rinit-.5))./(1+exp(4*(rinit-.5)));
plot(rinit,rfinalH,'rx-',rinit,rfinalS,'bo-');
xlabel('Linear Reflectance Prediction'); grid on;
ylabel('Final Reflectance'); legend('Hard','Soft');
Try it.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!