Roots of a polynomial with variables
34 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
For some problems, we have to to study some notions of stablility and zero polynomials in two variables, my que'stion how we can find the roots or zero polynomials in two variables. for example:
P(x,y)=3*xy -5y^2+7*x^2y
or a nother polynom
0 comentarios
Respuestas (2)
Sulaymon Eshkabilov
el 15 de Jun. de 2021
One of the viable ways to solve such polynomial type equations is to setp up the solution space within which you are seeking the roots to compute and solve them using fzero(). E.g.:
x=linspace(-2,2): % Choose the necessary solution space
for t=1:100
EQ= @(y)(3*x(t)*y-5*y.^2+7*(x(t)^2)*y);
y_roots = fzero(EQ,0);
end
Paul
el 15 de Jun. de 2021
Don't know the scope of the actual problems of interest, but for the two examples in the question:
syms x y
sol = solve(3*x*y - 5*y^2 + 7*x^2*y == 0,[x y],'ReturnConditions',true);
[sol.x sol.y sol.conditions]
syms z1 z2
sol = solve(1 - z1*z2 - 1/2*z1^2 - 1/2*z2^2 + z1^2*z2^2 == 0,[z1 z2],'ReturnConditions',true);
[sol.z1 sol.z2 sol.conditions]
5 comentarios
Paul
el 15 de Jun. de 2021
Apparently there are many solutions to this problem, i.e., many pairs (p,s) that make the determinant equal to zero. The pair (p,s) can be expressed as ( (z+2)/(z-4) , z) for z any number not equal to four. Check
A = [1 2;3 4];
p = @(z)((z+2)./(z-4));
s = @(z)(z);
z = 1;
det(diag([p(z) s(z)]) - A)
z = 8;
det(diag([p(z) s(z)]) - A)
z = 1 + 1i;
det(diag([p(z) s(z)]) - A)
Ver también
Categorías
Más información sobre Polynomials en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!