How does `svd(A*A')` reduce the computational cost?
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Computing singular value decomposition is the main computational cost in many algorithms .
For a matrixA(m*n) ,if m is much larger than n , one can compute the SVD of A*A',and then get an approximate SVD of by simple operations to reduce the computational cost.
How does it reduce the computational cost?
2 comentarios
Respuestas (1)
Cutie
el 21 de Jun. de 2021
SVD reduces computational costs because it provides a numerically stable matrix decomposition. You may refer to https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv for detailed wokrings of SVD
Ver también
Categorías
Más información sobre Eigenvalues en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!