How to difine the frequency range with the function 'nufft'?
19 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
The example is
t = [0:300 500.5:700.5];
S = 2*sin(0.1*pi*t) + sin(0.02*pi*t);
X = S + rand(size(t));
Y = nufft(X,t);
n = length(t);
f = (0:n-1)/n;
plot(f,abs(Y))
The frequency range here is [0,1],
My question is, for a noun-uniform (unknown) signal, How to calculate the frequency range? It is still 'f = (0:n-1)/n'?
1 comentario
NGR MNFD
el 4 de Jul. de 2022
hi dear xinsheng
I have the same question as you.Are you find your answer exactly?Thank you for your guidance
Respuestas (4)
Bjorn Gustavsson
el 22 de Jun. de 2021
To understand what you get out of a non-uniform Fourier-transform I find it educational to calculate the dftmtx and then purge the columns that you don't have data-samples from. In your case with 2 periods with 1 and 2 Hz sampling this would be rather simple:
t_full = 0:700.5;
t = [0:300 500.5:700.5];
t_full = 0:.5:700.5;
M_FFT0 = dftmtx(numel(t_full));
M_FFT = M_FFT0;
[~,~,idxMissing] = setxor(t,t_full);
M_FFT(:,idxMissing) = [];
S0 = 2*sin(0.1*pi*t_full) + sin(0.02*pi*t_full);
S = 2*sin(0.1*pi*t) + sin(0.02*pi*t);
fS = M_FFT*S(:);
fS0 = M_FFT0*S0(:);
plot(fftshift(abs(fS0)))
hold on
plot(fftshift(abs(fS)))
This should allow you to play with the theoretical frequency-resolution of the nufft, for different sample gaps.
HTH
may miao
el 17 de Feb. de 2022
You can read the following code and compare the fft and nufft results.
close all
clear
fs=1000;
ts=2;
N=fs*ts;
%fft for uniform data
t=(0:N-1)/fs;
x2= 2*sin(2*200*pi*t) + sin(2*117*pi*t);
Y2 = fft(x2);
figure
plot((0:N-1)/ts,abs(Y2)/N*2);
%nufft
n=([0:100 110:150 185:197 220:500 512:558 570:700 705:735 752:800 802:879 885:N]);
x= 2*sin(2*200*pi*n/fs) + sin(2*117*pi*n/fs);
Y = nufft(x,n,(0:N-1)/N);
hold on;plot((0:N-1)/ts,abs(Y)/N*2)
0 comentarios
NGR MNFD
el 5 de Jul. de 2022
hi dear xinsheng
I have the same question as you.Are you find your answer exactly?Thank you for your guidance
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!